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CHAPTER 1

Theoretical Background

1. THEORIES OF POINCARÉ, DIRAC, AND CURIE
1.1 The Birkeland-Poincaré effect
In 1896, Kristian Birkeland introduced a straight magnet in a Crookes

tube, and he was puzzled by a convergence of the cathodic beam that did not
depend on the orientation of the magnet (Birkeland, 1896). Henri Poincaré
explained this effect by the action of a magnetic pole on the electric charges
of the beam (such charges were only conjectured at that time); he showed
that it may be due to the action of only one pole of the magnet and that,
for symmetry reasons, it must be independent of the sign of the pole
(Poincaré, 1896). (See Figure 1.1)

To describe this effect, Poincaré wrote down the equation of an electric
charge in a coulombian magnetic field created by one end of the magnet.
The magnetic field is expressed as

H ¼ g
1
r2
r; (1.1)

where g is the magnetic charge. From the expression of the Lorentz force
(Poincaré, 1896) the following equation results:

d2r
dt2

¼ l
1
r3

dr
dt

" r; l ¼ eg
mc
; (1.2)

where e and m are the electric charge and the mass of the electron.
Poincaré found the following integrals of motion, where A, B, C, and L

are arbirary constants:

r2 ¼ Ct2 þ 2Bt þ A;
!
dr
dt

"2

¼ C: (1.3)

r" dr
dt

þ l
r
r
¼ L (1.4)
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He obtained the following from Eqs. (1.4) and (1.2):

L:r ¼ lr;
d2r
dt2

$r ¼ d2r
dt2

:
dr
dt

¼ 0: (1.5)

This means that r describes an axially symmetric conedthe Poincaré cone,
1896dand that the acceleration is perpendicular to its surface, so that r
follows a geodesic line. If the cathodic rays are emitted far from the magnetic
pole, with a velocity V parallel to the z-axis, they will have an asymptote
that obeys the following equations:

x ¼ x0; y ¼ y0 (1.6)

And we find, from Eqs. (1.3) and (1.4):

C ¼ V 2; L ¼ fy0V ; $x0V ; lg: (1.7)

Thus the z-axis is a generating line of the Poincaré cone, the half-vertex
angle Q0 of which is given by

sin Q0 ¼ V
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
(1.8)

Now, after the emission, the cathodic ray becomes a geodesic line rotating
along the cone and crosses the z-axis at distances from the origin given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q

sin f
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q

sin 2 f
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q

sin 3 f
;. f ¼ 2p sinQ0 (1.9)

Therefore, if the emitting cathode is a small disk of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
,

orthogonal to the z-axis and if the position of the magnetic pole is such

Figure 1.1 The Birkeland-Poincaré effect. When a straight magnet is introduced in a
Crookes tube, the cathodic rays converge regardless of the orientation of the magnet.
Above: the cases considered by Birkeland. Below: the cases corresponding to the cal-
culations of Poincaré.
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that one of these points is on the surface of the cone, there will be a concen-
tration of electrons emitted by the periphery of the cathode and even, approx-
imately, by the whole disk: this is the focusing effect observed by Birkeland.

This is an important result because the Poincaré equation [Eq. (1.2)] and
the integral of motion [Eq. (1.4)] may be seen as experimentally verified
because, for electrons falling on a fixed monopole, it is proved by the Birke-
land effect. Conversely, for monopoles falling on a fixed-coulomb electric
charge, it is implicitly proved by the simple fact that the interacting force
is the same for electricity and magnetism. Consequently, the Poincaré equa-
tion remains true.

In Eq. (1.4), the first term is clearly the orbital momentum of the electron
with respect to the magnetic pole. The second term was later interpreted by
J. J. Thomson (Thomson, 1904 and Lochak, 1995b), who showed that

eg
c
r
r
¼ 1

4pc

ZN

$N

x" ðE"HÞ d3x (1.10)

Thus, with the value of l given in Eq. (1.2), the second term of the
Poincaré integral is equal to the electromagnetic momentum and Eq.
(1.4) gives the constant total angular momentum J ¼ mL. The presence of a
nonvanishing electromagnetic angular momentum is due to the axial char-
acter of the magnetic field created by a magnetic pole and acting on a scalar
electric charge.

Let us add here a remark about symmetry (Lochak, 1997a, b): the Poin-
caré cone is enveloped by a vector r, which is the symmetry axis of the system
formed by the electric and the magnetic charges, and this axis rotates (with a
constant angle Q0) around the constant angular momentum J ¼ mL. But this
is exactly the definition of the Poinsot cone associated with a symmetric top.

The identity of the Poincaré cone and the Poinsot cone of a symmetric
top is not surprising because the system formed by electric and magnetic
charges is axisymmetric and rotating around a fixed point with a constant
total angular momentum, just like a top, but with a different radial motion
because it is not rigid. Hence, the motion along the geodesic lines of the
cone has nothing to do with a top.

Let us introduce the following definition, which has two obvious
properties:

L ¼ r" dr
dt
; L:

r
r
¼ 0; L:

r
r
¼ l: (1.11)
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Figure 1.2 summarizes all of these points.
All the calculations and interpretations of Poincaré (1896) concerning an

electric charge (a cathodic raydthat is. an electron) in the field of a magnetic
pole are also right for a magnetic charge (a monopole) in the field of a cou-
lombian electric pole. The cause of this is the symmetry of Coulomb’s law
between electricity and magnetism. We shall see later in this chapter, that
this will be true in the case of our quantum equation for a magnetic monop-
ole, which gives, at the classical limit, the Poincaré equation.

Consider another point: All the reasonings of Poincaré concerning the
convergence phenomenon of cathodic rays observed by Birkeland are inde-
pendent of the sign of magnetic charges, as Poincaré claimed, because his
description depends only on the half-angleQ0 of the cone, which is defined
by Eq. (1.8). Actually, by virtue of Eqs. (1.2) and (1.8), this angle depends on
V=l ¼ V mc=eg, but an inversion of the sign of this ratio could be compen-
sated by an inversion of time. Therefore, the crossing points between the
trajectory and the angulat momentum would be same.

Nevertheless, the sign of charges appears in the rotation sense of the
spiral trajectory of an electron along the cone, because the rotation of an
electron (or of a monopole) around the cone is left or right according to
the sign of V=l. This is the unique echo of the opposite variances of elec-
tric and magnetic charges, which only quantum mechanics is able to
describe clearly.

1.2 P. A. M. Dirac
Dirac (1931) asked the following question: “Why are all electric charges
multiples of the same unit charge?”. He considered exactly the same prob-
lem as Poincaré (the interaction between an electric charge and a fixed

Angular momentum
L

λr/r

Λ

L

Symmetry axis

Figure 1.2 The generation of the Poincaré (or Poinsot) cone and the decomposition of
the total momentum.
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magnetic pole), but in quantum terms. This problem is exactly the same as
the motion of a light magnetic monopole in the vicinity of a fixed electric
charge. But there is a great difference: contrary to Poincaré, who knew the
equation in classical mechanics, Dirac didn’t know the quantum equation.
We shall answer this question later in this discussion.

Here, we consider, as Dirac did, the motion of an electric charge e in the
field of a fixed magnetic monopole with a charge g. The field H is thus
defined by a vector potential A such that

curl A ¼ g
r
r3
: (1.12)

It is clear that there is no continuous and uniform solution A of this dif-
ferential equation because if we consider a surface S bounded by a loop L,
we find according to the Stokes theorem:

Z

S

H:dS ¼
Z

S

curlA:dS ¼
Z

L

A:dl ¼ g
Z

S

r
r3
:dS ¼ g

Z

S

dU; (1.13)

where dS, dl, and dU are elements of surface, length, and solid angle,
respectively. Now, if the loop is shrunken to a point, while the pole remains
inside the closed surface S, we get

Z

L/0

A:dl ¼ g
Z

S

dU ¼ 4pg: (1.14)

This equality is impossible for a continuous potential A because the first
integral vanishes. There must be a singular line around which the loop
shrinks. Now, whatever the wave equation, the minimal coupling is given
by a covariant derivative:

V$ i
e
Zc

A (1.15)

Dirac introduced into the wave function j a nonintegrable (nonuniva-
lent) phase g defining a new wave function:

j ¼ eigj: (1.16)

If we apply the preceding operator [Eq. (1.15)], we know that the intro-
duction of this phase g is equivalent to the introduction of a new potential
by a change of electromagnetic gauge:

$
V$ i

e
Zc

A
%
j ¼ eig

$
Vþ iVg$ i

e
Zc

A
%
j: (1.17)
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We can identify the new potential with the gradient of g, but the phase
factor eig is admissible only if the variation of g around a closed loop equals a
multiple of 2p. Then, we must have

e
Zc

Z

L/0

A$dl ¼
Z

L/0

Vg$dl ¼ ðDgÞloop ¼ 2pn: (1.18)

Comparing Eqs. (1.14) and (1.18), we find the Dirac condition between
electric and magnetic charges:

eg
Zc

¼ n
2
: (1.19)

It is interesting to confirm this result on a solution of Eq. (1.12). Dirac
chose the following solution:

Ax ¼
g
r

$y
r þ z

; Ay ¼
g
r

x
r þ z

; Az ¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: (1.20)

In polar coordinates, the solution is

x ¼ r sin q cos 4; y ¼ r sin q sin 4; z ¼ r cos q: (1.21)

Eq. (1.20) becomes

Ax ¼
g
r
tan

q

2
sin 4; Ax ¼

g
r
tan

q

2
cos 4; Az ¼ 0: (1.22)

There is a nodal line that goes from z ¼ 0 to z ¼ N for q ¼ p, and
the Dirac condition is easily found if we compute the curvilinear integral
[Eq. (1.18)] around this line for q ¼ p$ ε and and ε/0. We must have

e
Zc

¼
Z

L/0

A$dl ¼ eg
Zc

Z

q¼p$ε; ε/0

1
r
tan

q

2
r sin qd4 ¼ 2pn: (1.23)

Therefore,

eg
Zc

Z

ε/0

sin ε
tan ε

2
d4 ¼ eg

Zc
2" 2p ¼ 2pn: (1.24)

Here, we see that the factor 2 comes from the factor ε=2 in the tangent,
and we could conclude from that that it is related to the fact that the nodal
line begins at r ¼ 0. But this is wrong because the solution Eq. (1.20) or Eq.
(1.22) chosen by Dirac depends on an arbitrary gauge; and in addition, his
choice is not very good because his potential has no definite parity. Moreover,

Theory of the Leptonic Monopole 9



it must be stressed that with a polar vector A, the vector curl A is axial, so that
Eq. (1.12) would be admissible only with a pseudo-scalar constant g, against
which we have already objected. In the following discussion, we shall
give the wave equation of a monopole in an electromagnetic field; our
potential will not beA, but the pseudo-potential B, which will be a solution
of the following equation (where e is the scalar electric charge):

curl B ¼ e
r
r
: (1.25)

B must be an axial vector, which is evident in Eq. (1.25), because curl B
must be polar like r. Mutatis mutandis, Dirac’s reasoning presented here will
be true if we choose an axial solution of Eq. (1.25):

Bx ¼
e
r

yz
x2 þ y2

; By ¼
e
r

$xz
x2 þ y2

; Bz ¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

(1.26)

This solution differs from the Dirac-like solution, which would be

B0
x ¼

g
r

$y
r þ z

; B0
y ¼

g
r

x
r þ z

; B0
z ¼ 0: (1.27)

In this, B0 differs from B only by a gauge:

B$ B0 ¼ Varctan
y
x
: (1.28)

In polar coordinates, Eq. (1.26) becomes

Bx ¼
e
r
sin 4

tan q
; By ¼

e
r
$cos 4
tan q

; Bz ¼ 0: (1.29)

Using Eq. (1.26) or (1.29) in Dirac’s proof of the relation [Eq. (1.19)], the
singular line goes from$N toþNinstead of from 0 toþNand the equality
(1.24) becomes

2" eg
Zc

Z

ε/0

sin ε
tan ε

d4 ¼ 2" eg
Zc

2p ¼ 2pn: (1.30)

This result gives Eq. (1.19) again, but now the factor 2 is no longer due to
tan ε=2, but due to the fact that the singular line pierces the sphere in two
points. Therefore, the factor n/2 in the Dirac formula [Eq. (1.19)] was not
at all related to the fact that the singular line began in r ¼ 0. Nevertheless,
this answer is not good either, and we shall prove further that the factor n/2 is
actually a consequence of the double connexity of the rotation group.
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According to Eq. (1.19), if we choose the charge e of the electron as a
unit electric charge, the magnetic charge is quantized. For n ¼ 1, we obtain
the unit magnetic charge as a function of the electron charge and of the fine
structure constant:

g0 ¼
Zc
2e2

e ¼ e
2a

¼ 137
2

e ¼ 68:5e: (1.31)

This is a large charge, which is of the same order as the electric charge of a
nucleus in the region of lantanides, beyond the middle of Dmitri Mende-
leev’s classification (137e is even beyond the classification). Nevertheless,
this does not mean that such a monopole interacts with atoms as strongly
as an electric charge of the same order. On the contrary, it must be stressed
that all the experiments on monopoles are performed directly in the atmos-
phere of the laboratory, often at distances of several meters that cannot be
crossed, for instance, by electrons. It can be undertood from the formula
[Eq. (1.8)] of Poincaré, which shows that the total Lagrange moment
increases with the Poincaré constant l (proportional to the magnetic charge,
as will be confirmed in quantummechanics), the vertex angleQ0 of the cone
decreases with the charge because it varies as l$1. Finally, it is the angle Q0

that gives the deviation of monopoles by an electric charge.
It is noteworthy that Dirac’s condition [Eq. (1.19)] is based on general

assumptions of quantum mechanics and electromagnetism, which is con-
firmed (despite some differences) by our equation (1.30). Nevertheless,
we cannot forget that it was not systematically proveddand indeed, it
has even been contradicted by many authors. For instance, we have already
quoted the systematic, but contradictory, experiments of Mikhailov
(Mikhailov, 1985, 1987, 1993). A paper of Price and colleagues (Price
et al., 1975) also identifies a track as being either one of a heavy nucleus,
or of a monopole with a Dirac charge. And we remember the well-known
measure of Blas Cabrera that gave the Dirac charge (Cabrera, 1982), but it
was an “irreproducible result.”

1.3 Pierre Curie
Among the symmetry laws stated by Pierre Curie, there is at least one that is
well known and applied even by many who don’t know that he was the first
who stated it, at the beginning of his memoir, (Curie, 1894a,b)1:

1 In Lochak (1997a, b), part of the Curie paper is given in a modern form, with consequences for the
charges, electromagnetic potentials, and quantum mechanics that will be given later in the book.
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When some causes produce some effects, the elements of symmetry of causes
must be found in the produced effects

Reciprocally, it is evident that

If some effects reveal some asymmetry, this dissymmetry must be found in the
causes that gave rise to these effects.

These laws are only two introductive lines of Curie’s great memoir,
which plays an essential role in what has followed it because it is essentially
devoted to electromagnetism. But, as it was said in the Foreword, we shall
follow this memoir only for a few pages, to give a foundation to some def-
initions. Then, we shall use more modern language and introduce some
extensions.

The Spatial Symmetry of an Electric Field
Consider an electric field generated by two parallel coaxial circular plates of
different metals. It has the symmetry of the cause: a revolution field around
the axis, and every plane passing it will be a plane of symmetry. This is the
symmetry of a truncated cone, but not yet of a cone, because the symmetry
could be greater (cylindrical or spherical).

To find the exact symmetry, Curie takes a conductive, electrically
charged sphere in a uniform electric field: “A force will act on the sphere
in the direction of the field.” The asymmetry of the effect must be found
in the cause: the force exerted on the sphere has no symmetry axis normal
to its direction, so the system sphere-field (the cause) no longer has such an
axis. On the other hand, the sphere has infinite axes of symmetry, such that
the cause of assymmetry is not in the sphere but in the field itself. Conclu-
sion: the electric field cannot have a cylindrical or a spherical symmetry and
it has the symmetry of a cone and the field may be represented by a polar
vector (in R3). The same is true for a current or an electric polarization.

The Spatial Symmetry of a Magnetic Field
Consider the magnetic field generated at the center of a circular wire carry-
ing a permanent current. The axis of the wire is an axis of isotropy and the
plane of the circle is a plane of symmetry. Therefore, a magnetic field has a
plane of symmetry normal to the direction of the field2.

2 This paradoxical symmetry is curiously represented on a painting of René Magritte: La reproduction
interdite, which shows a man before a mirror who turns his back to the viewer. His image in the
mirror turns his back toodjust like a magnetic field!
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On the other hand, the field has no binary normal axis, for the following
reason. Take a rectilinear conductive bar moving normally along its length.
This moving bar has a binary axis parallel to its velocity. Now, let us intro-
duce a magnetic field normal to the bar and to the velocity: an electromotive
force is generated in the bar, normal to it, and the binary axis disappears.
Therefore, this axis must be absent from the cause, which means that a mag-
netic field has no orthogonal binary axis: it has the symmetry of a rotating
cylinder. It may be represented by an axial vector (in R3). The same is
true for a magnetic current or a magnetic polarization. Maxwell already
knew that (Maxwell, 1873), without speaking of symmetry.

Now, from the reasoning of Pierre Curie, we can easily deduce the sym-
metry of charges, which is not given in his papers. Let us take the preceding
circular electrically charged plates. A symmetry with respect to a parallel and
equidistant plane will exchange between themselves the plates and the
charges. Are the latter modified or not? We don’t know it a priori, but
we know that the electric field between the plates will be reversed. Thus,
the electric charges are not changed: electric charges e are P-invariant.
The conclusion would be the opposite for magnetic charges because in a
similar experiment, we see that the reflected magnetic field is not changed.
Therefore, magnetic charges g are P-reversed:

P : E/$E; H/H; e/e; g/$g: (1.32)

We shall see later in this chapter that these conclusions are confirmed in
quantum mechanics for E; H, and e, but not for g, at least in this formu-
lation. Such a change of the sign of a physical constant, like g, would be
astonishing because it would signify that the constant g is a pseudo-scalar:
a unique case in physics, while all the other constants are true scalars (see the Fore-
word). We shall see that this is not the case in quantummechanics, but in the
meanwhile, we shall keep the classical variance in another form.

Time Symmetry of Electromagnetic Fields
Curie didn’t speak of time symmetry, which was not considered in his time.
We shall start from the Lorentz force exerted by a field E; H on an electric
or a magnetic charge:3

Felec ¼ eðEþ ð1=cÞ v"HÞ; Fmagn ¼ gðH$ ð1=cÞ v" EÞ (1.33)

3 The formula for Fmagn is easily found by applying the Lorentz transformation to the law F ¼ gH in
the proper system.
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These formulas cannot be contradicted by quantum mechanics because
they must be found again at the geometrical optic limit. This is not enough
to define variances, but it must be implicitly connected with them.

Now F is T-invariant (because F ¼ mg), and v changes its sign with t, so
we have, from Eq. (1.33):

T : eE/eE; eH/$eH; gH/gH; gE/$gE: (1.34)

Thus we have two possible variances:

TI : E/E; H/$H; e/e; g/$g
TII : E/$E;H/H; e/$e; g/g

(1.35)

Such a case often happens: the electrodynamical phenomena only give a
choice because they are able to define a link between the variances of several
physical quantities, but not the variance of each quantity. It does not allow
any possibility of an arbitrary choice4. Actually, in order to find the precise
variances, we need some other phenomena, purely electric or purely mag-
netic (Curie, 1894a,b).

In this case, one can verify that to choose between the two possible laws
[Eq. (1.35)], it is enough to find the variance of only one of the quantities
E; H; e; g. We choose an electrochemical phenomenon: cathions heading to
the anode with a current density: J ¼ rv (r is the density of cathions and
v their velocity). Let us reverse the sign of time t; we do not know if the
sign of charges is reversed, but in every case, the sign of ions and of the elec-
trode remain opposite. Now, the sign of the velocity v is reversed; therefore,
to conserve the density of current J, the sign of the electric charge must be
reversed. Therefore, Law TII is good and must be chosen.

Charge Conjugation and P, T, C Variances
In the forces [Eq. (1.33)], the fields E and H are exterior. Thus, they are
independent of the charges e and g to which these fields are applied. But
if a charge is reversed, the force is reversed, and thus we get

C : E/E; H/H; e/$e; g/$g: (1.36)

Now, we can gather Eqs. (1.32), (1.35), and (1.36) into the P, T, C var-
iances of fields and charges. As a result, we get the following table:

4 For instance, such a choice is suggested in Jackson (1975, p. 249): “It is natural, convenient, and
permissible to assume that charge is also a scalar under spatial inversion and even under time reversal.”
Of course, this is not an argumentdand even if it were, it is wrong!
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&
I
'
2

4
P : E/$E; H/H; e/e; g/$g
T : E/$E; H/H; e/$e; g/g
C : E/E; H/H; e/$e; g/$g

3

5: (1.37)

It must be emphasized that these P, T, C variances are directly deduced
from experimental facts and from the laws of force [Eq. (1.33)], which are
direct consequences of electromagnetism and relativity (and both are exper-
imentally verified).

Symmetries of Electromagnetic Potentials
These symmetries are deduced from the definition of the electromagnetic
fields E and H, which are related to the Lorentz potentials V and A or to
the pseudopotentials W and B, which we cover later in this chapter5.
W and B are the potentials “seen” by a magnetic pole, just as V and A are
seen by an electric pole. Thus, we have two possible notations, for the elec-
tric case and for the magnetic case, respectively:

E ¼ $VV $ 1
c
vA
vt

; H ¼ curl A; or : E ¼ curl B; H ¼ VW þ 1
c
vB
vt
:

(1.38)

From Eq. (1.37), we find the P, T, C variances of the potentials:

&
II
'
2

4
P : A/$A; V/V ; B/B; W/$W ; e/e; g/$g
T : A/A; V/$V ; B/$B; W/W ; e/$e; g/g
C : A/A; V/V ; B/B; W/W ; e/$e; g/$g

3

5:

(1.39)

Let us make some remarks about these laws at this point:
a. TheLorentz transformation gathers the vector and scalar potentials ðA;V Þ

and ðB;W Þ, defined in R3, into two space-time quadrivectors:

Am ¼ ðA; iV Þ; iBm ¼ ðB; iW Þ (1.40)

It is easy to introduce Eq. (1.39) into these expressions and to prove that
Am and Bm are polar and axial vectors in space and time, respectively (this is
why there is an i before Bm and not before Am).
b. The laws [Eq. (1.39)] give good ðP or T Þ variances P/$P; E/E

for the Lagrange momenta:

5 Here, we retain the notation B
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P ¼ pþ e
c
A; E ¼ mc2 þ eV and P ¼ pþ g

c
B; E ¼ mc2 þ gW

(1.41)

c1. One can verify that the laws [Eq. (1.37)] ensures the invariance of the
Maxwell equations:

$1
c
vH
vt

¼ curl E;
1
c
vE
vt

¼ curl H; div H ¼ 0; div E ¼ 0

H ¼ curl A; E ¼ $gradV $ 1
c
vA
vt

;
1
c
vV
vt

þ div A ¼ 0:
(1.42)

c2. The laws [Eqs. (1.37) and (1.39)] ensure the invariance of the de Broglie
equations of light, including the potentials (de Broglie, 1934):

$1
c
vH
vt

¼ curl E;
1
c
vE
vt

¼ curl Hþ k20A

div H ¼ 0; div E ¼ $k20V

H ¼ curl A; E ¼ $gradV $ 1
c
vA
vt

;
1
c
vV
vt

þ div A ¼ 0

(1.43)

c3. Finally, the same laws [Eqs. (1.37) and (1.39)] ensure the invariance of
the equations of the magnetic photon to which we already alluded. We shall
return to it later, more precisely (Lochak, 1995a,b, 2003). The role of
the potentials is played by the pseudopotentials as follows:

$1
c
vH
vt

¼ curl Eþ k20B;
1
c
vE
vt

¼ curl H

div H ¼ k20W ; div E ¼ 0

H ¼ gradW þ 1
c
vB
vt
; E ¼ curl B;

1
c
vW
vt

þ div B ¼ 0:

(1.44)

The Curie symmetries, in quantum mechanics, will be given later, and
that discussion will provide a stronger basis to the CPT symmetries, where
differences with some accepted principles appear. An important result of
Tables (I) and (II) above (which is absent from Curie’s results, but which
was deduced owing to his methods) is that the electric charge e is P-invariant,
but T-reversed, and that the inverse is true for the magnetic charge g. And this
will be true in quantum mechanics.
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Let us make a conclusive remark concerning Maxwell and Curie. It is
well known that, in all domains, important ideas may be lost for a long
time. In the domain of symmetry, we face a phenomenon of this kind.
Despite the fact that modern physics is dominated by symmetry, such great
pioneers as Maxwell and Curie knew some results in electromagnetism that
now have been more or less forgotten.

CHAPTER 2

A Wave Equation for a Leptonic Monopole,
Dirac Representation

As was stated in the Foreword, our theory is not based on the Dirac works
on monopoles, but on his famous theory of the electron. Our theory is based
on two main points:
• The massless Dirac equation has a second gauge invariance, which

defines a second electromagnetic interaction that obeys the laws of a
magnetic monopole and the symmetry laws predicted by Pierre Curie.
The monopole and the anti-monopole are chiral particles that are mirror
images, as are the neutrino and the antineutrino, but here, it is true for
magnetically charged particles, as it was predicted more than a century
ago by Curie (Curie, 1894a, b, 1994).

• Contrary to other theories, our theory predicts that such a monopole is
associated not with strong interactions, but with weak ones. And contrary
to these other theories, the prediction is confirmed by experimentation.
There are naturally two paths for the theory, following either Dirac or

Weyl. This chapter is devoted to the Dirac representation, while the next
one will be devoted to the Weyl representation.

2.1 THE TWO GAUGE INVARIANCES OF DIRAC’S
EQUATION

Consider the Dirac equation without an external field:

gmvmjþ m0c
Z

j ¼ 0; (2.1)

where: xm ¼ fxk; ictg are the relativistic coordinates and the matrices gm are
expressed through the following Pauli sk matrices:
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gk ¼ i
!

0 sk
$sk 0

"
; k ¼ 1; 2; 3; g4 ¼

!
I 0
0 $I

"
;

g5 ¼ g1g2g3g4 ¼
!
0 I
I 0

"
: (2.2)

Now let us define a general form of gauge transformation, where G is a
constant Hermitian matrix and q a constant phase:

j/eiGqj (2.3)

At this point, introduce the gauge [Eq, (2.3)] into Eq. (2.1):
&
gme

iGqgm

'
gmvmjþ m0c

Z
eiGqj ¼ 0: (2.4)

Now, develop G on Clifford algebra as follows:

G ¼ S16
N¼1aNGN ; GN ¼ I ;gm;g½mgn(;g½lgmgn(;g5; (2.5)

and remember the relation gmGNgm ¼ )GN (Pauli, 1936), where ð)Þ
depends on m and N. We have

gme
iGqgm ¼ eiq S16

N¼1aNgmGNgm ¼ eiq S16
N¼1 )aNGN : (2.6)

Eq. (2.1) remains invariant under the transformation [Eq, (2.4)] if G com-
mute or anticommute with all the gm; thus, we must have, in the last term of
Eq. (2.6), either þ or $ before GN for all gm. We find G ¼ I , for the plus
sign, and G ¼ g5 for the minus sign, and no other possibility. So

G ¼ I 0 j/eiqj or G ¼ g5 0 j/eig5qj: (2.7)

The great difference is as follows:
• In the first case,G ¼ I commutes with the gm: Eq. (2.4) is identical to Eq.

(2.1), which is invariant under the transformation [Eq. (2.3)]. And we
have defined the phase invariance, and j/eiqj for any value of m0,
and we know that this ensures the conservation of charge.

• In the second case, G ¼ g5 anticommutes with the gm, so that the differ-
ential term in Eq. (2.1) has a minus sign in the exponential, while a plus
sign remains in the exponential of the mass term. Therefore, the trans-
formation j/eig5qj defines a gauge invariance only for a massless par-
ticle, at least for a linear equation (we shall see later in this chapter that
things become different for nonlinear equations).
But, even with the nonlinear case, the symmetry has not broken. It has

just become another symmetry: a chiral symmetry, which knows the
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difference between left and right, as was the case for magnetism (Maxwell,
1873; Curie, 1894a). We went from an electric particle, like an electron, to a
magnetic monopole (Curie, 1894b, Lochak, 1985, 1995a,b, 2006).

It may be asserted that a monopole is not necessarily a super-heavy scalar:
it can be a massless pseudoscalar. Indeed, we shall prove that the chiral invar-
iance entails the conservation of magnetism, but with some important differ-
ences with respect to the conservation of electricity:
1. The conservation of magnetism is weaker than the conservation of elec-

tricity because its conservation is broken by the introduction of a linear
mass term in the equation. Despite some analogies, the equations for an
electron and a monopole are very different because of their different
gauge laws.

2. The second difference is that, in (2.7): q is a scalar phase for an electron
and a pseudoscalar for a magnetic monopole. This is because g5 is a
pseudoscalar operator, which implies two different mathematical worlds.

2.2 THE EQUATION OF THE ELECTRON

The Dirac equation of the electron ensues from the first transforma-
tion [Eq. (2.7)] generalized by a local gauge, in which the abstract angle q

is replaced by a physical angle 4 with physical coefficients:

j/ei
e
Zc 4j (2.8)

So, introducing Eq. (2.8) in the differential term of Eq. (2.1), we find (up
to the exponential factor)

vmj/ei
e
Zc 4

$
vmJþ i

e
Zc

vm4 j
%
: (2.9)

Now, we can generalize Eq. (2.8) by the adjunction of a potential:

j/ei
e
Zc 4j; Am/Am þ vm4: (2.10)

Owing to Eqs. (2.9) and (2.10), Eq, (2.1) may be replaced by the follow-
ing equation:

gm

$
vm $ i

e
Zc

Am

%
jþ m0c

Z
j ¼ 0; (2.11)

which is the Dirac equation of the electron in the presence of an electro-
magnetic field deriving from a Lorentz potential Am and which is invariant
under the local gauge transformation [Eq. (2.10)]. The gauge transformation
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is local because it depends on space and time through an external electro-
magnetic field deriving from the potential Am.

Eq. (2.11) implicitly defines a minimal coupling and a covariant derivative:

Vm ¼ vm $ i
e
Zc

Am (2.12)

In the gauge transformation [Eq, (2.10)], the Lorentz potential Am is a
polar vector and 4 a scalar angle.

2.3 THE SECOND GAUGE, THE SECOND COVARIANT
DERIVATIVE, AND THE EQUATION FOR A
MAGNETIC MONOPOLE

Now, consider the Dirac equation [Eq. (2.1)] with m0 ¼ 0:

gmvmj ¼ 0: (2.13)

This equation is invariant under both gauges [Eq. (2.7)]. We shall now
examine the second one in the local case; i.e., with a pseudoscalar phase
4 depending on the coordinates:

j/ei
g
Zc g54j: (2.14)

Introducing the transformation [Eq. (2.14)] in Eq. (2.13), we find
gm

&
vm þ i gZc g5vm4

'
j ¼ 0, which suggests a new minimal electromagnetic

coupling by substituting the gradient of the pseudophase f by the only
possible potential, which is the pseudopotential defined in Eq. (1.40):
iBm ¼ ðB; iW Þ, from which we get a new covariant derivative:

Vm ¼ vm $
g
Zc

g5Bm: (2.15)

In Eq. (2.15), i disppears because of the pseudoscalar character of g5.
Finally, we find an new equation, which is the equation of a magnetic
monopole (Lochak, 1983, 1984, 1985):

gm

$
vm $

g
Zc

g5Bm

%
j ¼ 0: (2.16)

This equation is relativistically invariant and gauge invariant, under the
pseudoscalar transformation (with the same comment about i):

j/ei
g
Zc g54j; Bm/Bm þ ivm4: (2.17)
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It will be proved later that the magnetic charge g is a scalar and not a
pseudoscalar, which does not contradict Curie’s laws because the pseudosca-
lar character of magnetism is not related to the number g but to the pseudo-
scalar magnetic charge operatorC ¼ gg5; i.e., to the pseudoscalar matrix g5.
This matrix lies at the origin of the difference between classical and the
quantum theories of magnetic monopoles.

2.4 THE DIRAC TENSORS AND THE “MAGIC ANGLE” A
OF YVON-TAKABAYASI (FOR THE ELECTRIC AND
THE MAGNETIC CASE)

It is known that in the Clifford basis [Eq. (2.5)], the Dirac spinor
defines 16 bilinear tensorial quantities: a scalar, a polar vector, an antisym-
metric tensor of rank 2, an antisymmetric tensor of rank 3 (an axial vector),
and an antisymmetric tensor of rank 4 (a pseudoscalar):

u1 ¼ jj; Jm ¼ ijgmj; Mmn ¼ ijgmgnj; Sm ¼ ijgmg5j; u2 ¼ $ijg5j&
j ¼ jþg4; jþ ¼ j h:c:

'
:

(2.18)

If u1 and u2 do not vanish simultaneously, the Dirac spinor may be writ-
ten as follows (Jacobi & Lochak, 1956a,b):

j ¼ r eig5AUjO: (2.19)

where r ¼ amplitude, U ¼ general Lorentz transformation, jO ¼ constant
spinor, and A ¼ the pseudoscalar angle of Yvon-Takabayasi:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
; A ¼ arctan

u2

u1
: (2.20)

In Eq. (2.19), U is a product of six factors eiG w, with three real Euler
angles (rotations in R3) and three imaginary angles (velocities in R3). So
we have seven angles in j: (1) three Euler angles, including the proper rota-
tion angle 4, which gives a half-scalar phase 4/2 in the spinorJ, is conjugated
by a Poisson bracket to the component J4 of the polar vector Jm; (2) the “imag-
inary three velocities,” i vkc ; (3) the half-pseudoscalar angle A conjugated to the
S4 component of the axial vector Sm.

Both vectors Jm and Sm are defined in Eq, (2.18).
Angle A plays an important role in the Dirac theory of the electron

because it appears in the tensor representation based on Eq, (2.18) (Taka-
bayasi, 1957; Jacobi & Lochak, 1956a, b). Without A, the Dirac equation
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would be an equation of a classical relativistic spin fluid: the quantum prop-
erties are concentrated in the magic angle A, which appears in several ten-
sorial equations deduced from the Dirac equation. The role played by the
angle A in the theory of the magnetic monopole is even more fundamental.

For a discussion of all these questions, see Jakobi & Lochak (1956a, b),
which give the classical-field Poisson brackets already noted in the Foreword
and which are at the origin of the present theory of magnetic monopoles:

h4
2
; J4
i
¼ dðr $ r 0Þ;

(
A
2
;S4

)
¼ dðr $ r 0Þ: (2.21)

In the electric case (Dirac theory of the electron), eJ4 is a density of elec-
tricity and of probability, associated with the phase invariance; and the spatial
part eJ of eJm is the current density of electricity or probability. As a result of
the gauge invariance defined in Eq. (2.8), the Dirac equation [Eq. (2.11)]
of the electron entails the conservation of electricity owing to the conserva-
tion of the polar vector eJm:

vm
&
eJm

'
¼

&
vmiejgmj

'
¼ 0: (2.22)

In the magnetic case (equation of the monopole), the polar electric current
density eJm is replaced by the axial magnetic current density Km ¼ gSm. The time
and space components (K4 andK), ofKm will be the densities of magnetic charge
and of magnetic current, respectively. As a consequence of the gauge invariance
[Eq. (2.17)], the equation of the monopole [Eq. (2.16)] entails the conserva-
tion of magnetism through the conservation of the axial vector density Km:

vmKm ¼ 0;
*
Km ¼ gSm ¼ g

&
ijgmg5j

'+
: (2.23)

Now, it must be noticed that owing to the expressions of Jm and Sm in
terms of J [Eq. (2.18)], one can prove the following:
1. Jm is polar, Sm is an axial vector or a pseudovector: the definition [Eq, (2.23)]

shows that Sm is the dual of a completely antisymmetric tensor of the
third rank: fig2g3g4; ig3g1g4; ig1g2g4;g1g2g3g.

2. Jm is timelike and Sm is spacelike, by virtue of the Darwinede Broglie
equalities:

$JmJm ¼ SmSm ¼ u2
1 þ u2

2; JmSm ¼ 0: (2.24)

The expression Sm for the magnetic current was already suggested by
Salam (1966) for symmetry. But in this case, this is not an a priori defini-
tion–rather, it is a consequence of the wave equation and of the second
gauge condition [Eq. (2.17)].
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Here, it must be stressed that Dirac’s theory defines only two vectors,
without derivatives: Jm and Sm. Because Jm is polar and timelike, it may be
interpreted as a current density of electricity and probability. Because Sm

is axial, it may be interpreted as a current density of magnetism: this double
coincidence is a remarkable example of harmony between physics and
mathematics. We shall see a little later, in the discussion of the Weyl repre-
sentation, that the spacelike character of Sm is by no means an objection
against its interpretation as a current: it will still reinforce this mathematical
harmony6.

2.5 P, T, C SYMMETRIES. PROPERTIES OF THE ANGLE A
(NOT TO BE CONFUSED WITH THE LORENTZ
POTENTIAL A)

Even though we shall be discussing the transformation of the wave
function later in this chapter, it is interesting to say here that according to
our theory, the P, T, C invariances are in perfect accordance with Curie’s
laws.

In the electric case, the correct transformations given by the P;T ;C
invariances of the Dirac equation [Eq. (2.11)] are the following, where Ak
and A4 are the Lorentz potentials (Lochak, 1997a, b):

P : e/e; xk/$xk; x4/x4; j/g4j
Ak/$Ak; A4/A4

T : e/$e; xk/xk; x4/$x4; j/$ig3g1j
*

Ak/Ak; A4/$A4
C : e/$e; j/g2j

*

(2.25)

where P and C are the Racah transformations (Racah, 1937), but T is not,
because, as we have seen in Chapter 1, the electric charge e is reversed by the
T transformation, which leads to the antilinear wave transformation
J/$ig3g1J

*, often known as weak time reversal7.
We shall now adopt this law as the true time reversal. This is always true,

including in the case of a magnetic charge, because one can easily prove that
the P;T ;C invariances of the monopole equation [Eq, (2.16)] are given by

6 For a long time, Sm was considered the spin vector, because its space components appeared in the
Dirac expression of total angular momentum: $iðxjvk $ xkvjÞ þ sk ði; j; k ¼ circular permutation;
sk ¼ “spin matrices”Þ.

7 The Racah T transformation, j/g1g2g3j, contradicts the transformation e/$ e.
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P : g/g; xk/$xk; x4/x4; j/g4j
Bk/Bk; B4/$B4
T : g/g; xk/xk; x4/$x4; j/$ ig3g1j

*

Bk/Bk; B4/$B4
C : g/g; j/g2j

*

(2.26)

In Eq. (2.25), contrary to Eqs. (1.37) and (1.39), the magnetic charge g is
invariant in the three transformations P;T ;C.

The pseudoscalar character of magnetism is not given by the constant g,
but by the charge-operator gg5 which lies at the origin of all the differences
between the classical and quantum theories of magnetic monopoles. Now
it may be shown that u1 ¼ jj is really a scalar, and u2 ¼ $ijg5j a
pseudoscalar, as a consequence of the P;T ;C transformations of the spinor
j given in Eqs. (2.25) and (2.26) and applied to the formulas of these quan-
tities given in the list [Eq. (2.18)]. An elementary calculation gives

P : u1/u1; u2/$u2; T : u1/u1; u2/$u2;

C : u1/$u1; u2/$u2:
(2.27)

Therefore, u1 represents P and T invariants, and u2 represents P and T
pseudoinvariants. And they are both reversed by C so that they are not PTC
invariants. On the contrary, it is easy to prove that they are both relativistic
invariants.

The definition [Eq. (2.19)] of the angle A shows, owing to Eq. (2.26),
that
1. The angle A is a relativistic invariant.
2. The sign of A is reversed by P and by T so that A is a relativistic pseudo-

scalar (in R4).
3. The angle A is C invariant. Therefore, A is PTC invariant.

Now a geometrical interpretation of the chiral gauge may be given. We
shall first define a chiral plane, in which we consider a vector ðu1; u2Þ:
actually, ðu2Þ is reversed when x or t is reversed. By virtue of Eq. (2.20),
the angle A is a pseudoangle, so that the vector with coordinates
ðu1; u2Þ may be defined by

u1 ¼ r cos A; u2 ¼ r sin A: (2.28)

Now, consider a rotation q in the plane ðu1; u2Þ, defined by a rotation
q=2 of a spinor:

j0/eig5=2j: (2.29)
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Using the definition [Eq. (2.18)] of u1 ¼ jj and u2 ¼ $ijg5j, we
find from Eq. (2.28) the rotation of the vector ðu1; u2Þ:

!
u0
1

u0
2

"
¼

!
cos q $sin q
sin q cos q

"!
u1
u2

"
0 A0 ¼ Aþ q: (2.30)

Therefore, the second gauge invariance [Eq. (2.29)] is a rotation, just
like the first one, but it is a rotation in the chiral plane, not in the physical
space.

Now the quantity r will be called the principal chiral invariant. The rota-
tion angle q=2 of the spinor is equal to half the rotation angle q of a vector in
the chiral plane, in accordance with the spinor geometry.

Finally, as we have seen, according to Eq. (2.26), the charge con-
jugation does not change the sign of the magnetic constant of charge g,
which means that two monopoles with opposite constants g are not
charge-conjugated: we shall see that a change of g to eg signifies a
change of the vertex angle of the Poincaré cone. In the next chapter,
we shall see what charge conjugation means in the magnetic case, but it
may be stated here that two conjugated monopoles have the same charge
constant g.

We cannot create or annihilate pairs of monopoles with charges g andeg,
as was the case for electric charges e and ee. As a result, there is no danger of
an infinite polarization of the vacuum with such zero mass monopoles.
Moreover, one has not to invoke great masses to explain the rarity of
monopoles or the difficulty of observing them. There are other reasons
for this, which will be explored later in this book.

CHAPTER 3

The Wave Equation in the Weyl Representation.
The Interaction Between a Monopole and an
Electric Coulombian Pole. Dirac Formula.
Geometrical Optics. Back to Poincaré

This chapter will explore the same monopole equation as Chapter 2, but for
the Weyl representation.
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3.1 THE WEYL REPRESENTATION

We shall define the Weyl representation by the following transforma-
tion (Lochak, 1983, 2006), which divides the wave function j into the two-
component spinors x and h:

J/UJ ¼
!
x
h

"
; U ¼ U$1 ¼ 1ffiffiffi

2
p ðg4 þ g5Þ; g4 ¼

!
1 0
0 $1

"
;

g5 ¼
!
0 1
1 0

"
: (3.1)

The matrix g5 and the magnetic charge operator C are diagonalized:

UBU$1 ¼ Ugg5U
$1 ¼ gg4 ¼

!
g 0
0 $g

"
: (3.2)

Eqs. (3.1) and (3.2) show that x and h are eigenstates of B, with eigen-
values g and $g:

UBU$1
!
x
0

"
¼ g

!
x
0

"
; UBU$1

!
0
h

"
¼ $g

!
0
h

"
: (3.3)

Owing to Eqs. (3.1) and (1.40), Eq. (2.16) splits into a pair of uncoupled
two-component equations in x and h, corresponding to the opposite eigen-
values of B:

(
1
c
v

vt
$ s:V$ i

g
Zc

ðW þ s:BÞ
)
x ¼ 0

(
1
c
v

vt
þ s:Vþ i

g
Zc

ðW $ s:BÞ
)
h ¼ 0:

(3.4)

The P;T ;C symmetries [Eq. (2.25)] take the form:

P : g/g; xk/$xk; t/ t; Bk/Bk; W/$W ; x4h
T : g/g; xk/ xk; t/$t; Bk/$Bk; W/W ; x/s2x*; h/s2h*

C : g/g; x/$is2h*; h/is2x*:
(3.5)

P and T exchange Eq. (3.4) between themselves.
Thus, we have a pair of charge conjugated particlesda monopole and an anti-

monopoledwith the same charge constant g and opposite helicities. They are
defined by the operatorC, which shows that our monopole is a magnetically
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excited neutrino because Eq. (3.4) reduces to a pair of two-component neutrino
equations if g ¼ 0.

Eq. (3.4) is invariant under the following gauge transformation (with
opposite signs of the phase of x and h, which is nothing but the Weyl rep-
resentation of the gauge transformation [Eq. (2.16)]:

x/exp
$
i
g
Zc

f
%
x;h/exp

$
$i

g
Zc

f
%
h; W/W þ 1

c
vf

vt
; B/B$ Vf:

(3.6)

3.2 CHIRAL CURRENTS

The gauge [Eq. (3.6)] entails, for Eq. (3.4), the following conservation
laws:

1
c
v
&
xþx

'

vt
$ Vxþsx ¼ 0;

1
c
v
&
hþh

'

vt
þ Vhþsh ¼ 0: (3.7)

Thus, we have two currents with several important properties. They are
isotropic and chiral, and they exchange between themselves by parity:

Xm ¼
&
xþx;$xþsx

'
; Ym ¼

&
hþh; hþsh

'
;XmXm ¼ 0;

YmYm ¼ 0; P 0Xm4Ym:
(3.8)

Owing to Eq. (3.1), we find a decomposition of the polar and axial vec-
tors, as defined in Eq. (2.17):

Jm ¼ Xm þ Ym; Sm ¼ Xm $ Ym: (3.9)

The chiral currents Xm and Ym may be considered even more fundamen-
tal than electric and magnetic currents. We already know the relations [Eq.
(2.23)], and it is easy to prove, by using Eqs. (2.17) and (3.1), that

u1 ¼ xþhþ hþx; u2 ¼ i
&
xþh$ hþx

'
;

r2 ¼ u2
1 þ u2

2 ¼ 4
&
xþh

'&
hþx

'
:

(3.10)

It was noted in Chapter 2 that a consequence of Eq. (2.23) is that Jm is
timelike and Sm is spacelike. Owing to Eq. (3.9), we can add that the
fact that one of the vectors (Jm; Sm) is timelike and the other spacelike is a
trivial property of the addition and subtraction of isotropic vectors. And if
Jm is precisely spacelike and Sm spacelike, this is due to the þ sign of
ðu2

1 þ u2
2Þ in Eq. (2.23).
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Therefore, our magnetic current, Km ¼ g Sm, may be spacelike because
the true magnetic currents are the isotropic currents g Xm and $g Ym, cor-
responding to the spinor states x and h. The pseudovector Km is only their
difference, so it has no reason to be spacelike or timelike. Therefore, the
relativistic type of the magnetic current Km has no importance; on the con-
trary, the fact that Jm is timelike is very important because owing to this
property, Jm may be interpreted as a current density of probability or elec-
tricity. Moreover, Jm is a polar vector, which is necessary for a current of
probability or electricity, while Sm is a pseudovector, as a magnetic current
must be (Curie, 1894a,b). We have already noted this beautiful example of
harmony between physics and mathematics.

3.3 A REMARK ABOUT THE DIRAC THEORY OF THE
ELECTRON

The equations of current continuity [Eq. (3.7)] were deduced from
the Weyl representation [Eq. (3.4)] of the equation of the magnetic monop-
ole [Eq. (2.15)]. It is interesting to compare that result with the Weyl rep-
resentation of the equation of the electron, applying the transformation
[Eq. (3.1)] to Eq. (2.10) instead of (2.15).

Taking into account the equality Am ¼ ðA; iV Þ, we find a system that is
the analog of Eq. (3.4) but equivalent to the Dirac equation:

(
1
c
v

vt
$ s:Vþ i

e
Zc

ðV þ s:AÞ
)
xþ i

m0

Zc
h ¼ 0

(
1
c
v

vt
þ s:Vþ i

g
Zc

ðV $ s:AÞ
)
hþ i

m0

Zc
x ¼ 0:

(3.11)

Let us notice some points here:
1. Eqs. (3.4) and (3.11) has the same differential part.
2. Thus, in the massless case, we find in both systems two separate equations

for the chiral components x;h (i.e., for opposite helicities). It is known
that in Eq. (2.15) or (3.4), the condition m0 ¼ O is a consequence of
the chiral gauge invariance J/exp

$
i gZc g5f

%
J. Nevertheless, the

fact that chiral components obey separate equations [Eqs. (3.4) and
(3.11)] depends only on the zero mass, whatever the reason for this
zero mass may be and whatever the charge of the particle is.
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3. Now, from the Dirac system [Eq. (3.11)], with m0sO in the case of an
electric interaction, it is easy to deduce the evolution law of isotropic
currents:

1
c
v
&
xþx

'

vt
$ Vxþsxþ i

m0c
Z

&
xþh$ hþx

'
¼ 0

1
c
v
&
hþh

'

vt
þ Vhþsh$ i

m0c
Z

&
xþh$ hþx

'
¼ 0:

(3.12)

We see here that the law does not depend explicitly on electromagnetic
interaction. The difference between electricity and magnetism appears in the
presence of a mass term only in the case of the electron, a term that is excluded
by the chiral gauge in the case of amagneticmonopole.The chiral gauge invar-
iance is the true difference between the two theories because it introduces, in
Eq. (3.4), the magnetic interaction that is responsible for new forces.

Taking Eqs. (3.8) and (3.10) into account, we find the following laws,
which mean that the Dirac pseudoinvariant u2 is the source of chiral iso-
tropic currents:

vmXm þ i
m0c
Z

u2 ¼ 0; vmYm $ i
m0c
Z

u2 ¼ 0: (3.13)

Adding and subtracting these equalities, we find two well-known laws:

vmJm ¼ 0; vmSm þ 2i
m0c
Z

u2 ¼ 0: (3.14)

Eq. (3.13) expresses the conservation of electricity and probability, by the
Dirac equation. Eq. (3.14) is called, in Dirac’s theory, the Uhlenbeck and
Laporte equality. Starting from our theory of the leptonic monopole, we
see that Eq. (3.13) governs the evolution of the left and right isotropic cur-
rents generated by the Dirac pseudoinvariant, which implies that Eq. (3.14)
of Uhlenbeck and Laporte governs their difference, Sm.

At this point, it is important to notice a fundamental difference between
electricity and magnetism; in the Dirac equation, there is conservation of
neither isotropic currents Xm and Ym, nor of their difference
Sm ¼ Xm $ Ym. As a result, there is no conservation of magnetism; on the
contrary, the sum Jm ¼ Xm þ Ym is conserved, and this is the conservation
of electricity. The latter is related only to the presence of a mass term, but
the following must be underlined:
1. We cannot add to Eq. (3.11) a magnetic interaction because it would be

contrary to the presence of the mass term.
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2. We cannot introduce into Eq. (3.4) an electric interaction because
there is no Dirac massless electron, which would not admit quantized
states and would provoke difficulties with the creation and annihilation
of pairs.
Therefore, “leptonic dyons” carrying both electric and magnetic charges

cannot exist.

3.4 THE INTERACTION BETWEEN A MONOPOLE AND
AN ELECTRIC COULOMBIAN POLE (ANGULAR
FUNCTIONS)

To solve the problem of a central field, we must introduce W¼ 0 and
either Eq. (1.26) or (1.29) of B in the chiral equations [Eq. (3.4)]. The Poin-
caré integral [Eq. (1.4)] takes, in the quantum case, the expressions given
next, in Eq. (3.15), for the left and right monopole. For the time being,
we shall admit that result without proof, which will be given in the next
chapter, in a more general case:

Jx ¼ Z

(
r" ð$iVþD BÞ þD rþ 1

2
s
)

Jh ¼ Z

(
r" ð$iV$D BÞ $D rþ 1

2
s
)
:

(3.15)

Jx and Jh differ only by the sign of D; i.e., by the sign of the eigenvalues
of the charge operator C ¼ gg5, defined in Eq. (2.16). The notations are

D ¼ eg
Zc
; B ¼ eB; br ¼ r

r
; (3.16)

whereD is theDirac number,which we already know from theDirac condition
[Eq. (1.19)]dthe last will be found below a new form; and B is the pseu-
dopotential [Eq. (1.26) or (1.29)].

As was said previously, the proof that Jx and Jh are first integrals of Eq.
(3.4) will be given in the next chapter. But for now, it is easy to show
that the components of J obey the relations:

½J2; J3( ¼ iZ J1; ½J3; J1( ¼ iZ J2; ½J1; J2( ¼ iZ J3 (3.17)

Here, we shall only find their proper states, restricting our demonstration
to the plus sign of D; i.e., to the left monopoledthe first expression in Eq.
(3.4)ddropping the index x.
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Now, let us write J as

J ¼ Z

(
Lþ 1

2
s
)
; L ¼ r" ð$iVþDBÞ þDbr: (3.18)

One can see that ZL is the quantum form of the Poincaré first integral [Eq.
(1.4)] (Poincaré, 1896). J is the sum of the quantum form ZL of the first
integral and of the spin operator Zs: J is the total quantum angular momentum
of the monopole in an electric coulombian field, the generalization of the
classical quantity. Of course, the components of ZL obey the same relations
[Eq. (3.16)] as the components of J because L commutes with s.

In polar angles, from the definition [Eq. (3.18)] of L and from the polar
form [Eq. (1.29)] of B, we find the following:

Lþ ¼ L1 þ iL2 ¼ ei4
!
i cot qþ v

v4
þ v

vq
þ D
sin q

"

L$ ¼ L1 $ iL2 ¼ e$i4
!
i cot qþ v

v4
$ v

vq
þ D
sin q

"

L3 ¼ $i
v

v4
:

(3.19)

Let us note that, owing to our choice [Eq. (1.26)] for the electromagnetic
gauge, there is no additional term in L3, contrary to the findings of Wu and
Yang (1975, 1976). Now, we need the eigenstates Zðq;4Þ ofL2 andL3. By
virtue of Eq. (3.16), the eigenvalue equations of L must be

L2Z ¼ jðj þ 1ÞZ; L3Z ¼ mZ; j ¼ 0;
1
2
; 1;

3
2
; 3;.;

m ¼ $j;$j þ 1;.; j $ 1:
(3.20)

To simplify the calculation of Z(q, 4), we shall introduce a new angle c,
the meaning of which will be given shortly. We write

Dðq;4;cÞ ¼ eiDcZ
&
q;4

'
; (3.21)

where the functionsDðq;4;cÞ are the eigenstates of operatorsRk, which are
easily derived from Eq. (3.19):

Rþ ¼ R1 þ iR2 ¼ ei4
!
i cot qþ v

v4
þ v

vq
$ i
sin q

v

vc

"

R$ ¼ R1 $ iR2 ¼ e$i4
!
i cot qþ v

v4
$ v

vq
$ i
sin q

v

vc

"

R3 ¼ $i
v

v4

(3.22)
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Obviously, the eigenvalues are the same as those of Z:

R2Z ¼ jðj þ 1ÞZ; R3Z ¼ mZ; j ¼ 0;
1
2
; 1;

3
2
; 3;.;

m ¼ $j;$j þ 1;.; j $ 1:
(3.23)

The operators Rk are well known: they are the infinitesimal operators of the
rotation group written in the fixed referential. The angles q;4;c are the Euler
angles of nutation, precession, and proper rotation. The role of the rotation
group is not surprising because of the spherical symmetry of the system consti-
tuted by a monopole in a central electric field.

Our eigenfunction problem is thus trivially solved: instead of the cum-
bersome calculations of monopole harmonics that do not exist, we see,
under the simple assumption of continuity of the wave functions with
respect to the rotation group, that the angular functions are the generalized
spherical functions; i.e., the matrix elements of the irreducible unitary repre-
sentations of the rotation group (Gelfand, Minlos, & Shapiro, 1963; Lochak,
1959). These functions are also the eigenfunctions of the symmetrical top.
This coincidence was noticed by Tamm in 1931 without explanation, but
here the explanation is evident because we already know the analogy
between a symmetrical top and a monopole in a central field. The eigen-
states of R2 and R3 are

Dm0;m
j ðq;4;cÞ ¼ eiðm4þm0cÞdm

0;m
j ðqÞ

dm
0;m

j ðqÞ ¼ Nð1$ uÞ
$ðm$m0Þ

2 ð1þ uÞ
$ðmþm0Þ

2

!
d
du

"j$mh
ð1$ uÞj$m0

ð1þ uÞjþm0
i

u ¼ cos q; N ¼ ð$1Þj$mim$m0

2j

!
ðj þ mÞ!

ðj $ mÞ!ðj $ m0Þ!ðj þ m0Þ!

"1=2

j ¼ 1
2
; 1;

3
2
; 2;.; m;m0 ¼ $j;$j þ 1;.; j $ 1; j:

(3.24)

The normalization factor N is so defined that rows and columns of the
unitary (2j þ 1) matrix of the representation Dj are normed to unity. To
normalize the quantum states, we must take the factor Z in Eq. (3.21) in
the form

Zm0;m
j ðq;4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1

p
Dm0;m

j ðq;4; 0Þ: (3.25)
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The proper rotation angle c does not appear in Zm0;m
j ðq;4Þ: it appears

only in the phase eiDc (D ¼ Dirac number) because the monopole was
implicitly supposed to be a point contrary to the symmetric top that has a
spatial extension. Nevertheless, there is a projection (different from zero),
of the orbital angular momentum on the symmetry axis, due to the chirality
of the magnetic charge. The eigenvalue associated to the projection is the
quantum number m0. The crucial point is that, if we compare Eqs. (3.21)
and (3.24), we see that the eigenvalue Zm0 of the projection must be equal
to the Dirac number D.

The quantization of the Dirac number D, thus is a consequence of the
continuity of the wave function, on the rotation group.

Taking into account Eq. (3.23), we find

D ¼ eg
Zc

¼ m0 ¼ $j;$j þ 1;.; j $ 1; j; j ¼ n
2
: (3.26)

Taking into account the definition [Eq. (3.16)], we see that the equality
[Eq. (3.26)] is a new and more precise form of the Dirac condition [Eq.
(1.19)]. In this new formula, the integer (or half-integer) m0 is not an arbitr-
tay number as it was in the Dirac formula. Rather, m0 is now defined by the
projection of the angular momentum of the whole physical system on the
symmetry axis passing through the two charges.

The condition [Eq. (3.26)], which implies the Dirac condition [Eq.
(1.19)], appears as a consequence of the spherical symmetry of the system
and of the continuity of the wave functions with respect to the rotation
group. It is justified by a dynamical argument, not only formally derived.

As was already stated, the factor of one-half has nothing to do with the
strings beginning at the origin: it is a consequence of the double connexity of
the rotation group that appears in the presence of half-integers in the repre-
sentations of the group, and thus in the corresponding values of j and m0. Let
us draw attention to, concerning these questions, an important work of T.
W. Barrett in which the role of the rotation group in electromagnetic field
theories is extensively developed (Barrett, 1989).

Now, owing to Eqs. (3.16) and (3.26), we can define the values of the
magnetic charges as functions of the charge of the electron, the Planck con-
stant, and the velocity of light because the value g0 of the fundamental mag-
netic charge is given for n ¼ 1 by Eq. (3.26), and the others are multiples of
this value:

g0 ¼
Zc
2e2

¼ 1
2a

e ¼ 137
2

e ¼ 68; 5 e; g ¼ ng0: (3.27)
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In conclusion, it is useful to emphasize that the functions [Eq. (3.24)]
are defined for all the values of the Euler angles (namely, 0 + q + 2p;
0 + 4 + 2p; 0 + c + 2p). These intervals are good for all angles, including
q, which is a so-called normal rotation angle, just as 4 or c is. Thus, the
north pole is q ¼ 0 and the south pole q ¼ 2p. This fact seems shocking,
but it is the reason for which the interval 0 + q + p is generally introduced,
in order to obtain the univocity of Euler angles. But actually, it is better to
describe the rotation group not in the physical space R3, but in R4, which is
the SU2 space and the space of the Euler-Olinde-Rodrigues parameters
(Cartan, 1938; Lochak, 1959):

x1 ¼ sin
q

2
cos

4$ c

2
; x2 ¼ sin

q

2
sin

4$ c

2

x3 ¼ cos
q

2
sin

4þ c

2
; x4 ¼ cos

q

2
cos

4þ c

2
:

(3.28)

All is uniform in R4, including these parameters, the group representa-
tions, and the Euler angles. Now we must introduce the monopole harmon-
ics with spin, obtained by the Clebsch-Gordan procedure (Lochak, 1985a,b,
1995):

Um0;m
j ðþÞ ¼ Uþ

j ¼

0

BBBBB@

!
j þ m
2j þ 1

"1=2

Zm0;m$1
j

!
j $ mþ 1
2j þ 1

"1=2

Zm0;m
j

1

CCCCCA
;

Um0;m
j ð$Þ ¼ U$

j ¼

0

BBBBB@

!
j $ mþ 1
2j þ 1

"1=2

Zm0;m$1
j

$
!
j þ m
2j þ 1

"1=2

Zm0;m
j

1

CCCCCA
:

(3.29)

These harmonics correspond to the eigenvalues k ¼ j ) 1/2 of the total
angular momentum J. In the following discussion, we shall use the abbrevi-
ation U$

j , U
$
j , as well as several relations, the first of which is directly

deduced from Eq. (3.29):

J2Uþ
j$1 ¼ Z2kðkþ 1Þ Uþ

j$1; J2U$
j ¼ Z2kðkþ 1Þ U$

j : (3.30)
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The others are deduced from recurrence relations between generalized
spherical functions (Gelfand et al., 1963):

s: br Uþ
j$1 ¼ cos Q0 Uþ

j$1 þ sin Q0 U$
j

s: br U$
j ¼ sin Q0 Uþ

j$1 $ cos Q0 Uþ
j

cos Q0 ¼ m0

j
¼ D

j
; br ¼ r

r
:

(3.31)

The angle Q0 is the vertex half-angle of the Poincaré-cone (previously
shown in Figure 1.2) because Zm0 is the projection of the total orbital
momentum Zj on the symmetry axis of the system, as defined by the
monopole and the Coulombian center. We already knew that in the classical
case (as discussed in Chapter 1), and we shall find it again at the geometrical
limit of quantum theory.

3.5 THE INTERACTION BETWEEN A MONOPOLE AND
AN ELECTRIC COULOMBIAN POLE (RADIAL
FUNCTIONS)

The calculation of radial functions is based on the wave equations [Eq.
(3.4)]. We consider the x-equation [Eq. (3.4)] with W ¼ 0, making
B ¼ 1=e B, where B is given by Eqs. (1.26) and (1.29), and looking for a
solution with an angular momentum k ¼ j $ 1=2, taking into account
Eq. (3.25). The x-equation becomes

i
c
vx

vt
¼ s:ðiV$ m0BÞx: (3.32)

To apply a classical integration method of the hydrogen atom in Dirac’s
theory, we introduce in Eq. (3.30) the following expansion for x, where
F)ðrÞ are the radial functions that we want:

x ¼ e$iut
h
Fþ
j$1ðrÞU

þ
j$1 þ F$

j ðrÞU
$
j

i
: (3.33)

We find, multiplying by s: br ,

u

c
ðs: brÞ

$
Fþ
j$1U

þ
j$1 þ F$

j U
$
j

%
¼ ðs: brÞ s:ðiV$ m0BÞ

$
Fþ
j$1U

þ
j$1 þ F$

j U
$
j

%
:

(3.34)
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Using the equalities [Eqs. (1.26) and (3.18)], and the algebraic relation,
we get

ðs:A1Þðs:A2Þ ¼ A1:A2 þ iðA1 " A2Þ: s (3.35)

Consequently, Eq. (3.34) takes the form

dFþ
j$1

dr
Uþ
j$1 þ

dF$
j

dr
U$
j ¼

(
1
r
ðL:sÞ $

!
m0

r
þ i

u

c

"
ðs: rÞ

)$
Fþ
j$1U

þ
j$1 þ F$

j U
$
j

%
:

(3.36)

We know, from Eqs. (3.18) and (3.20), that

L2U) ¼ Z2jðj þ 1ÞU); J2U) ¼ Z2kðkþ 1ÞU)ðk ¼ j $ 1=2Þ; (3.37)

and

ðL: sÞUþ
j$1 ¼ ðj $ 1ÞUþ

j$1 ; ðL: sÞU$
j ¼ $ðj þ 1ÞU$

j : (3.38)

Multiplying Eq. (3.36) on the left by Uþ
j$1 and Uþ

j$1 in succession, and
integrating on the angles, we can eliminate U). Using Eq. (3.31), we find

(
d
dr
þ 1

r
$ j
r
s3 þ

!
m0

r
þ i

u

c

"
e$is2ðQ0=2Þs3eþis2ðQ0=2Þ

)
F ¼ 0;

FðrÞ ¼
 
Fþ
j$1ðrÞ
F$
j ðrÞ

!
:

(3.39)

At this point, let us introduce functions Bþ
j$1ðrÞ, B$

j ðrÞ such that

F ¼ eis2ðp=4$Q0=2Þ

r
B; B ¼

 
Bþ
j$1ðrÞ
B$
j ðrÞ

!

: (3.40)

Eq. (3.39) now becomes
!
d
dr
$ l
r
s3 þ i

u

c
s1

"
B ¼ 0; l ¼ j sinQ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 $ m0

p
: (3.41)

We see that l is the projection of the total orbital angular momentum
(monopole þ field) on the plane orthogonal to the axis of the Poincaré
cone (Poincaré, 1896). Differentiating Eq. (3.41), we obtain the Bessel equa-
tions (Ince, 1956):

d2Bþ
j$1

dr2
þ
($u

c

%2
$ lðl $ 1Þ

r2

)
Bþ
j$1 ¼ 0;

d2B$
j

dr2
þ
($u

c

%2
$ lðl þ 1Þ

r2

)
B$
j ¼ 0:

(3.42)
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Using Eq. (3.41) and the recurrence formula, we get

zJ 0lðzÞ þ lJlðzÞ ¼ zJl$1ðzÞ: (3.43)

Finally, we have

B ¼
$
r
u

c

%1=2

0

B@
i Jl$1=2

$
r
u

c

%

Jlþ1=2

$
r
u

c

%

1

CA: (3.44)

Inserting this result in Eq. (3.40) and then in Eq. (3.33), we obtain the x
spinor. A similar calculation would give the h spinor.

3.6 SOME GENERAL REMARKS

Here are some general remarks about this discussion so far:
1. Eq. (3.4) gives the correct expressions [i.e., Eq. (3.15)] for the angular

momentum of a monopole in a coulombian field.
2. The Dirac relation for the product of an electric and a magnetic charge is

deduced from our equation in a more precise form [i.e., Eqs. (3.26) and
(3.27)], and the radial functions are also deduced from the equation.
They are the same as those found for an electric charge in the field of
an infinitely heavy monopole (Kazama, Yang, & Golhaber, 1977).

3. The classical analogy will be explained further in another chapter of this
book.

4. u is not quantized: the monopole in a coulombian electric field is always
in a ionizing state.This fact, predicted by Dirac, might be a priori guessed
for two reasons: (1) It is suggested by the spiraling motion on the cone
described in the classical case by Poincaré, and we know that our equa-
tion has the Poincaré equation as a classical limit. (2) The potential B
given in Eq. (1.26) has an infinite string and as a result, the wave equation
cannot have square integrable solutions.

5. The fundamental difference between other theories and ours lies in the
fact that the present theory is the only one based on a pseudoscalar charge
operator C ¼ gg5 and in which the charge constant g is a scalar, because
the pseudoscalar character is confined in the operator g5. This entails that
g is separately P;T ;C invariant. To test what this difference means, let us
introduce a pseudoscalar constant g instead of the operator C ¼ gg5, in

Eq. (2.15), which becomes
&
vm $ g

Zc Bm

'
J ¼ 0 (which is without i
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because Gm is a pseudovector). From (Lochak 5), Eq. (3.4) becomes(
1
c
v
vt$s:V$ i gZcðW þs:BÞ

)
x¼0;

(
1
c
v
vtþs:V$ i gZcðW $s:BÞ

)
h¼0 with

a difference with respect to Eq. (3.4). Both equations now have the
same sign before i. This difference seems small, but actually it is
important because, whereas the x and h equations exchange between
themselves under the P and T transformations, as in the above mentioned
system [Eq. (3.4)], the charge conjugation is now C : g/$g;
$is2x*/h; is2h*/x. The monopole and the antimonopole are thus
not only chiral conjugated, they have opposite charges. Therefore,
they can constitute pairs of magnetic charges and, by their masslessness,
their annihilation induces a giant polarization. These particules are not
true monopoles; rather, they are massless electric particles, “disguised
in magnetic monopoles” (as stated in the Foreword and Lochak, 1985).

3.7 THE GEOMETRICAL OPTICS APPROXIMATION.
BACK TO THE POINCARÉ EQUATION

Now we must verify that we have found the correct Poincaré equa-
tion and the Birkeland effect. Let us introduce in Eq. (3.4) the following
expression of the spinor x:

x ¼ a eiS=Z; (3.45)

where a is a two-component spinor and S a phase. At zero order in Z, we
have

(
1
c

!
vS
vt

$ gW
"
$
$
VS þ g

c
B
%
: s
)
a ¼ 0; (3.46)

which is a homogeneous system with respect to a. A necessary condition for
a nontrivial solution is

1
c2

!
vS
vt

$ gW
"2

$
$
VS þ g

c
B
%2

¼ 0; (3.47)

which is a relativistic Jacobi equation with zero mass, and we can define the
kinetic energy, the impulse, and the linear Lagrange momentum as follows:

E ¼ $vS
vt

þ gW ; p ¼ VS þ g
c
B; P ¼ VS: (3.48)
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The Hamiltonian function will equal

H ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi$
Pþ g

c
B
%2

r
$ gW ; (3.49)

and a classical calculation gives as an equation of motion:

dp
dt

¼ g
!
VW þ vB

vt

"
$ g

c
v" curl B; (3.50)

which gives the classical form

dp
dt

¼ g
!
H$ 1

c
v" E

"
: (3.51)

But wemust not forget that themass of our particle equals zero, so v is the
velocity of light and we cannot write p ¼ mv. But the equality p¼ (E/c2) v
still holds when the energy E is a constant, which will be the case in a
coulombian electric field. So we have

d2p
dt2

¼ $l
1
r3

1
c
dr
dt

" r; l ¼ egc
E

(3.52)

This is exactly the Poincaré equation [Eq. (1.2), given previously in
Chapter 1], with a minus sign because we chose the left monopole. Now,
starting from the right monopole [i.e., from the second equation in Eq.
(3.4)] and with the same approximation:

h ¼ b eiS=Z; (3.53)

we find the following equation for b:
(
1
c

!
vS
vt

þ gW
"
$
$
VS $ g

c
B
%
: s
)
b ¼ 0: (3.54)

Of course, Eq. (3.54) gives the same Poincaré equation [Eq. (3.52)] with
a plus sign before l.

3.8 THE PROBLEM OF THE LINK BETWEEN A LEPTONIC
MAGNETIC MONOPOLE, A NEUTRINO, AND WEAK
INTERACTIONS

The problem being explored in this chapter may be summarized as
follows:
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1. The Weyl representation splits the massless Dirac equation into two
independent, two-component equations, which are considered since
1956 (by Lee and Yang and Landau) as the “neutrino two-component
theory”: one equation describes the neutrino and the other one the
anti-neutrino.

2. We have shown that the massless Dirac equation admits a second gauge
invariance: the chiral gauge. In addition, we have shown that not only
C-symmetry, but also P-symmetry has the important property of being
able to exchange between themselves the two Weyl equations, left and
right, respectively, which implies the chirality of the neutrino and the
anti-neutrino8.

3. Now, we have proved that the chiral gauge invariance of the massless Dirac
equation entails a new electromagnetic interaction which corresponds to a magnetic
monopole. And obviously there is no other possibility. The new pair of
Weyl-like equations with these new interaction terms remain separated
as with a free field. And it must be emphasized that our massless monop-
ole is a consequence of the second gauge invariance of the Dirac equa-
tion. It is profoundly rooted in electronics and electromagnetism, and for
this reason, it is very different from the monopoles with enormous masses
predicted by other theories. And the principal difference is that our
monopole leaves observed characteristic tracks, it is created in several lab-
oratories, and it gives physical observable consequences.

4. Now, the neutrino appears in this theory as a magnetic monopole with a
zero charge. Remember that this charge is equal to n times a unit charge
(including n ¼ 0). And the laws of symmetry are identical. For this rea-
son, we have presented the hypothesis that these leptonic monopoles,
thanks to the neutrino symmetry, manifest low-energy interactions.
This hypothesis was largely developed by Harald Stumpf, and we put
forward here a couple of experimental arguments:

8 There is a curious anecdote concerning this property. When HermannWeyl, at the end of the 1920s,
found his representation of the Dirac equation, he noticed, in the massless case, the splitting into the
two equations that we are discussing (the difference is that we introduce the interaction with an
electromagnetic field). So, he said, each half of the split equations acquires an independent sense.
Pauli objected to this because such an equation is not P-invariant. That is true, of course, but he
neglected the fact that there were, actually, two equations, which together were P-invariant, and it was
unknown at that time that they were left and right. The funny part of this story is that Pauli a little
later predicted the existence of the neutrinodi.e., the clue to the problem that was finally untangled
a quarter of a century later. The sad part of the story is, that if Pierre Curiedthe discoverer, if not the
solver, of these problemsdhad been alive, perhaps all would have been evident to him from the very
beginning.
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a. A beta radioactive sample (normally emitting neutrinos), submitted
to a magnetic field, emits leptonic monopoles (Ivoilov, 2006).

b. The lifetime of a beta radioactive sample is reduced when it is irradi-
ated by leptonic monopoles (Ivoilov, 2006).

c. A great quantity of neutrinos is emitted by the sun (because of the
great number of low-energy reactions). I have suggested the hypoth-
esis that some of them could be excited as leptonic monopoles by
strong solar magnetic fields. If this is the case, most of these monop-
oles would have to be trapped on the sun by the same magnetic fields,
which could be a new hypothesis that could explain the lack of solar
neutrinos received by the Earth. Nevertheless, some of these monop-
oles could escape and then follow trajectories directed toward the
Earth. In such a case, they must follow the lines of the magnetic field
directed to the Earth’s magnetic poles. So, when the explorer Jean-
Louis Etienne embarked on an expedition to the North Pole, we
gave him some X-ray films, currently used in laboratories to register
leptonic monopoles. And we have found on these films exactly the
same characteristic lines of monopoles (Bardout et al., 2007).

3.9 SOME QUESTIONS ABOUT THE DIRAC FORMULA
AND OUR FORMULA

At this point, let us recall this equation:

D ¼ eg
Zc

¼ n
2
; ð1:19Þ; and : D ¼ eg

Zc
¼ m0 ¼ $j;$j þ 1;.; j $ 1; j;

$
j ¼ n

2

%
;

(3.26)

Dirac’s conclusions and ours are different. Dirac was looking for the rea-
son why all the electric charges that appear in the physical world are equal to
either the electron charge or to a mutiple, and he was happy to find that, by
virtue of his formula, an arbitrary electric charge e must equal e ¼ n Zc

2g.

Therefore, if there is even only one monopole in the world, all the elecric
charges will be multiples of a unit charge that depends on the charge of this
monopole.

Our position is different. We have a theory concerning a magnetic
monopole, and we ask the question: What happens if that monopole inter-
acts with an electric charge? We are, in principle, able to answer this ques-
tion because we have a wave equation [namely, Eq. (2.15)]. But the answer
depends on the value of these charges, contrary to what happens with two electric
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charges, which can always interact without any condition: the reason is that
in our case, one charge is a scalar and the other is a pseudoscalar, which was
shown in the Dirac case because Eqs. (1.12) and (1.25) present the same
difficulty.

Thus, we find that Eq. (3.26) has an evident affinity with the Dirac con-
dition, with the difference that in our case, the electric chargednot the magnetic
onedis given, so that it seems that we must write Eq. (3.26) in inverse order
(with a being the fine structure constant):

g ¼ m0Zc
e
¼ em0Zc

e2
¼ e

m0

a
¼ 137 em0

with : m0 ¼ $j;$j þ 1;.; j $ 1; j
$
j ¼ n

2

%
:

(3.54)

Therefore, if we consider a magnetic charge g striking a particle with an
electric charge e, the collision will be possible only when the charge g of the
magnetic particle obeys the condition [Eq. (3.54)], depending on the electric
charge and on the angular momentum (more precisely, on its projection on
the symmetry axis): so that not only the charge but even the momentum
must be good. And the problem is still more complicated because there
are electric particles with greater charges: for instance, atomic nuclei with
charges Ne, so that Eq. (3.54) becomes

g ¼ m0 Zc
Ne

¼ em0 Zc
Ne2

¼ e
m0

Na
¼ e

137
N

m0: (3.55)

So, we must conclude that, on account of the relation [Eq. (3.26)], it is
impossible to conclude that the electric and the magnetic charges are both
conservative quantities because the conservation laws deduced from their
respective wave equations are not verified in the collisions.

But we have strong theoretical and experimental arguments in favor of
an absolute conservation of the electric charge, at least in the frame of the
actually recognized electromagnetic laws. Thus, it seems that we are obliged
to admit that, despite the fact that Eqs. (2.16) and (3.4) of the leptonic mag-
netic monopoles seem to be correct for symmetry laws, for the link to weak
interactions and for electromagnetic interactions with continuous fields,
something is missing in the description of the interaction between magnetic
and electric charges.

It is highly improbable that this problem results from a defect in Eq. (2.16)
or (3.4) because the preceding arguments could be developed in the Dirac
case, starting from Eq. (1.19), as in ours, starting from Eq. (3.26). And these
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relations are mutually reinforced not only by their analogy, but also because
they are confirmed by different arguments.

It seems evident that the difficulties are in the facts, not in the method.
Manifestly, these equations need to be generalized by the presence of oper-
ators that can describe quantum transitions between the different states,
defined by the preceding conditions, which is not presently the case.

CHAPTER 4

Nonlinear Equations. Torsion and Magnetism

Until now, we have seen only linear equations of a magnetic monopole: Eqs.
(2.16) and (3.4). This is quite natural, because our theory concerns the mag-
netic slope of the Dirac theory of the electron, which is itself linear. Actually,
the strangeness of this theory is not the linearity, which is normal in quantum
mechanics, but rather the fact that the monopole so described is massless for
algebraic reasons, which plays a basic role in the theory and cannot be easily
dismissed. It must be emphasized that I personally profoundly dislike it
because of the strangeness of the fact in itself, and, I must confess, because
I am a member of the de Broglie school, which always hated masslessness,
even applied to the photon, from which this peculiarity was eliminated.

Nevertheless, at first glance it seems difficult to avoid this peculiarity in
the case of our magnetic monopole because it is a consequence of the chiral
gauge invariance, which itself lies at the origin of all the results of the theory, as
follows:
• The conservation of magnetism and the correct electromagnetic interac-

tion of a monopole
• The classical limit, which gives the Poincaré equation and the analogy

with a symmetric top
• The accordance with the symmetry laws predicted by Pierre Curie

(1894a,b), which are experimentally verified (first of all, the chiral
symmetry)

• A more precise form of the Dirac relation between electric and magnetic
charges

• The analogy between neutrinos and leptonic monopoles, the latter being
considered as magnetically excited neutrinos and obeying the same laws
of symmetry

• The influence of monopoles on the lifetime of b radioactivity
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Thus, we have reason to believe that the g5 gauge is unavoidable. There-
fore, if we wish to define a mass term, we must look for a new way to do so
without abandoning chiral invariance. We have found such a way: namely,
nonlinearity, because we have already found a nonlinear chiral invariant, which
was given as Eq. (2.20) in Chapter 2 and Eq. (3.10) in Chapter 3 of this
book.

As a result, we can introduce in the Lagrangian a function FðrÞ of the
chiral invariant as a mass term. Of course, we could just as easily introduce
a function on the norm of the electric or magnetic currents: JmJm or SmSm (as
cited in Chapter 2), as Heisenberg did in his nonlinear theory (Heisenberg,
1953, 1954, 1966; D€urr et al., 1959; Borne, Lochak, & Stumpf, 2001;
Lochak., 1985), but we know that these norms are, including the sign, equal
to r2 [Eq. (2.24)].

4.1 A NONLINEAR MASSIVE MONOPOLE

First, let us write the following Lagrangian (Lochak, 1985) in the Dirac
representation9:

L ¼ jgm
,
vm
-
j$ g

Zc
jgmg5Bmjþ i

MðrÞc
Z

; (4.1)

where r is given by Eq. (2.20) and MðrÞ is a scalar function of r with the
dimension of a mass.

The corresponding equation is

gm

$
vm $

g
Zc

g5Bm

%
Jþ i

mðrÞc
Z

u1 $ ig5u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q J ¼ 0; mðrÞ ¼ dMðrÞ
dr

:

(4.2)

In the Weyl representation, we get

L ¼ xþ
!
1
c
½vt( $

g
Zc

W
"
x$ xþs:

$
½V( þ g

Zc
B
%
xþ

þhþ
!
1
c
½vt( þ

g
Zc

W
"
hþ hþs:

$
½V( $ g

Zc
B
%
hþ i

MðrÞc
Z

;

(4.3)

9 Here, we use the Costa de Beauregard convention ½v( ¼ v
/

$ v
)
.
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which gives the following equations:

1
c
vtx$ s:Vx$ i

g
Zc

ðW þ s: BÞxþ i
mðrÞc
Z

ffiffiffiffiffiffiffiffi
hþx

xþh

s

h ¼ 0

1
c
vthþ s:Vhþ i

g
Zc

ðW $ s: BÞhþ i
mðrÞc
Z

ffiffiffiffiffiffiffiffi
xþh

hþx

s

x ¼ 0

!
mðrÞ ¼ dMðrÞ

dr

"

(4.4)

These equations are chiral-invariant, like the linear equation. The mag-
netic current [Eq. (2.23)] is conserved, and, owing to Eq. (2.24), the equa-
tions are PTC-invariant (Lochak, 1997a, b) and the isotropic chiral currents
[Eq. (3.8)] are separately conserved. In spite of that, Eq. (4.4) is generally
coupled, as opposed to Eq. (3.4). But this coupling is not strong: If the
degree of mðrÞ is greater than 1, the nonlinear term vanishes when
r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþhÞðhþxÞ

p
¼ 0, which happens either for x ¼ 0 or h ¼ 0, or

on the light cone (the Majorana case), which will be examined later in
this chapter.

Now one can see that, in Eq. (4.4), x and h are phase-independent. This
is why we can consider plane waves with different frequencies u and u0, as
well as wave numbers k and k0, for x and h:

x ¼ a eiðu t$k:rÞ;h ¼ b eiðu
0t$k0:rÞ: (4.5)

Introducing these expressions in Eq. (4.4) without external field, we find
(Lochak, 1985, 1995a,b)

$u
c
þ s:k

%
aþ mðrÞc

Z

ffiffiffiffiffiffiffi
bþa
aþb

s

b ¼ 0

!
u0

c
$ s:k0

"
bþ mðrÞc

Z

ffiffiffiffiffiffiffi
aþb
bþa

s

a ¼ 0:

(4.6)

If we multiply the first equation by
&
u0

c $ s:k0
'
, with the following

definitions:
!
u0

c
$ s:k0

" $u
c
þ s:k

%
¼ Uþ s:K; U ¼ uu0

c2
$ k:k0;

K ¼ 1
c
ðu0k$ uk0Þ þ ik" k0;

(4.7)
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we have

ðUþ s:KÞaþ mðrÞc
Z

ffiffiffiffiffiffiffi
bþa
aþb

r !
u0

c
$ s:k0

"
b ¼ 0: (4.8)

Then, owing to Eq. (4.6), we find
"
Uþ s:K$

!
mðrÞc
Z

"2
#
a ¼ 0; (4.9)

and finally, we must make the determinant of this equation zero to find a
nontrivial solution, which gives the dispersion relation

 

U$
!
mðrÞc
Z

"2
!2

$K2 ¼ 0: (4.10)

We shall find a more explicit expression going back to Eq. (4.7), from
which

K2 ¼ 1
c2
ðu0k$ uk0Þ2 $ ðk" k0Þ2; (4.11)

and hence it is easy to deduce the following:

U2 $K2 ¼
!
u2

c2
$ k2

"!
u02

c02
$ k02

"
: (4.12)

Thus, we get the dispersion relation

!
u2

c2
$ k2

"!
u02

c2
$ k02

"
$ 2

!
u u0

c2
$ k:k0

"!
mðrÞc
Z

"2

þ
!
mðrÞc
Z

"4

¼ 0 :

(4.13)

Now, let us take the case of a homogeneous equation in x and h:

MðrÞ ¼ m0 r; mðrÞ ¼ m0 ¼ Const: (4.14)

Owing to Eq. (4.13), we easily find two interesting kinds of waves:
1. u ¼ u0; k ¼ k0: Both monopoles have the same phase, and the disper-

sion relation reduces to

u2

c2
¼ k2 þ m20

$
k ¼

ffiffiffiffiffi
k2

p %
: (4.15)
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This is the ordinary dispersion relation of a massive particle, known as a
bradyon.
2. On the other hand, if we have u ¼ $u0, k ¼ Lk0, the phases have

opposite signs, and the dispersion relation becomes

u2

c2
¼ k2 $ m20 (4.16)

This is the dispersion relation of a supraluminal particle, known as a
tachyon.

The wave equations [Eqs. (4.2) and (4.4)] seem to be the first in which
tachyons appear without any ad hoc condition, but only as a particular sol-
ution among others. These nonlinear equations can be considered in differ-
ent ways, which were described in Lochak (2003). Let us state once more
that the chiral components of the nonlinear equations [ Eq. (4.2)] of a monopole
in a coulombian electric field cannot be separated, as they were in the linear case
[Eq. (3.4)].

4.2 THE NONLINEAR MONOPOLE IN A COULOMBIAN
ELECTRICAL FIELD

We shall see shortly that, in a coulombian electrical field with the
pseudopotential [Eq. (1.26)], not only the linear equations [Eq. (3.4)], but
also the nonlinear equations [Eq. (4.4)] admit the same angular operator
[Eq. (3.14)], as an integral of motion.

For technical reasons, we shall collect the operators [Eq. (3.15)] into a
unique operator in the Dirac representation, and we shall introduce the fol-
lowing classical vectorial notation:

J ¼ Z

(
r" ð$iVþ g4DBÞ þ g4D

r
r
þ 1
2
S
)
; S ¼

!
s 0

0 s

"
;

D ¼ eg
Zc
; B/eB:

(4.17)

Of course, the commutation rules [Eq. (3.17)] are satisfied by the com-
ponents of Eq. (4.17), and we shall prove that J is an integral of motion, but
we must be more careful than in the linear case described in Chapter 3
because of the presence of a nonlinear term in the Hamiltonian. So we
return to the definition of a first integral, which is not a commutation
rule but rather the definition: the mean value of the operator J is a constant in
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virtue of the wave equations [ Eq. (4.2) or (4.4)]. To do so, we introduce the
Dirac form of quantum equations in a vectorial formulation:

1
c
vj

vt
¼ Hj; H ¼ a:Vþ i D S: Bþ i mðrÞ ðu1a4 þ u2a5Þ (4.18)

a ¼
!
0 s
s 0

"
; a4 ¼

!
I 0
0 $I

"
¼ g4; S ¼

!
s 0
0 s

"
; s4 ¼

!
0 I
I 0

"
¼ g5

s ¼ s4a; $ia1a2a3 ¼ s4; a1a2a3a4 ¼ a5; s ¼ Pauli matrices:
(4.19)

Now we must prove that

d
dt

Z
JþJ J dxdydz ¼

Z !
vJþ

vt
J JþJþJ

vJ

vt

"
dxdydz

¼ i
Z

Jþ½HJ$ JH (J ¼ 0: (4.20)

The classical ½H J$ J H ( commutator appears, but we must examine in
more detail the following three terms:

1
c
d
dt

Z
jþJjdv ¼ PþQþR (4.21)

which correspond to the x; y; z components of J. For instance, we have

Px ¼
Z

jþðJx a:V$ a:V JxÞjdv

Qx ¼ iD
Z

jþ
!
Jx

zðs1y$ s2xÞ
rðx2 þ y2Þ

$ zðs1y$ s2xÞ
rðx2 þ y2Þ

Jx

"
jdv

Rx ¼
Z

jþ½Jx ðu1a4 þ u2a5Þ $ ðu1a4 þ u2a5Þ Jx(jdv:

(4.22)

Now, recall that in Chapter 1, we had

Bx ¼
e
r

yz
x2 þ y2

; By ¼
e
r

$xz
x2 þ y2

; Bz ¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; (1.26)

so

yBz $ Byz ¼ xr
x2 þ y2

$ x
r
; zBxdxBz ¼

yr
x2 þ y2

$ y
r
; xBy $ yBy ¼ $z

r
;

(4.23)
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and the operator [Eq. (4.17)] becomes

Z$1Jx ¼ $iðr" VÞx þD
xr

x2 þ y2
s4 þ

1
2
s1

Z$1Jy ¼ $iðr" VÞy þD
yr

x2 þ y2
s4 þ

1
2
s2

Z$1Jz ¼ $iðr" VÞz þ
1
2
s3:

(4.24)

So Eq. (4.22) is split into “triads,” corresponding to Jx, Jy, Jz. For
instance, we have for x:

Px ¼
Z

jþðJx a:V$ a:V JxÞjdv

Qx ¼ iD
Z

jþ
!
Jx

zðs1y$ s2xÞ
rðx2 þ y2Þ

$ zðs1y$ s2xÞ
rðx2 þ y2Þ

Jx

"
jdv

Rx ¼
Z

jþ½JxmðrÞ ðu1a4 þ u2a5Þ $ mðrÞðu1a4 þ u2a5Þ Jx(jdv:

(4.25)

Here, we shall consider only this x-case. Introducing Eq. (4.21), we have
Px ¼ P1 þ P2 þ P3; Qx ¼ Q1 þQ2 þQ3; Rx ¼ R1 þ R2 þ R3:

(4.26)

If we gather Eq. (4.18) to Eq. (4.26), we find

P1 ¼ $i
Z

jþ½ðr" VÞða:VÞ $ ðr" VÞða:VÞ(jdv

¼ i
R
jþ&a2vz $ a3vy

'
jdv

P2 ¼ $D
Z

jþ
(
ða:VÞ s4

xr
x2 þ y2

)
jdv

P3 ¼ $i
Z

jþ&a2vz $ a3vy
'
jdv ¼ $P1 / P1 þ P3 ¼ 0:

(4.27)

We know that Px ¼ P1 þ P2 þ P3, and we find the following for Qx:

Q1 ¼ D
Z

jþ&yvz $ zvy
' zðs1y$ s2xÞ

rðx2 þ y2Þ
jdv

Q2 ¼ 0

Q3 ¼ D
Z

jþ s3xz
rðx2 þ y2Þ

jdv / Q1 þ P2 ¼ $Q3:

(4.28)
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Hence we see that ½HJ$ JH ( ¼ 0 for the first three linear terms of the Ham-
iltonian [Eq. (4.18)], which ensures a fortiori the conservation of J in the linear case
presented in Chapter 3.

Now, only the nonlinear part remains, which reduces Eq. (4.25) to the
following condition:

Rx ¼
Z

jþ½JxmðrÞ ðu1a4 þ u2a5Þ $ mðrÞðu1a4 þ u2a5Þ Jx(jdv: (4.29)

At first, we have

R1 ¼$ i
Z

jþ½ðr" VÞmðrÞ ðu1a4 þ u2a5Þ

$ mðrÞðu1a4 þ u2a5Þðr" VÞ(jdv;
(4.30)

which easily takes the following form:

R1 ¼ $i
Z

jþðr" VÞFðrÞjdv ¼ i
Z

jþðr" VÞF
&
u2
1 þ u2

2
'
jdv;

(4.31)

where Fðu2
1 þ u2

2Þ is a function, the expression of which is not important
because ðu2

1 þ u2
2Þ does not depend on the angles, so that R1 ¼ 0. Finally,

we find the following for the other components:

R2 ¼ D
Z

jþ r

x2 þ y2
½s4 ðu1a4 þ u2a5Þ $ ðu1a4 þ u2a5Þs4 (jdv ¼ 0

R3 ¼
Z

jþmðrÞ½ sðu1a4 þ u2a5Þ $ ðu1a4 þ u2a5Þ s(jdv ¼ 0

(4.32)

because s commutes and s4 anticommutes with a4 and a5.
So, the nonlinear equations [Eq. (4.2) or (4.3)] define the same angular

momentum [Eq. (3.15)] as the linear equations. Therefore, the angular part
must be the same in both cases; the difference is only in the radial factor.

4.3 CHIRAL GAUGE AND TWISTED SPACE. TORSION
AND MAGNETISM

Let us take the particular case of Eq. (4.2) when Bm ¼ 0;
kðrÞ ¼ l r; l ¼ const:

gmvmJþ ilðu1 $ ig5u2ÞJ ¼ 0: (4.33)

50 Georges Lochak



Equivalent equations were considered by many researchers (Finkelstein,
Lelevier, & Ruderman, 1951; Heisenberg, 1954; D€urr et al., 1959; Weyl,
1950; Rodichev, 1961). Of these, Rodichev (1961) was the one to consider
a space with an affine connection, and we shall briefly summarize this problem
as follows:
1. No metric is introduced, and the theory is formulated only in terms of

connection coefficients Gi
rk. One can define contravariant and covariant vec-

tors Ti and Ti, and covariant derivatives:

VmTi ¼ vmTi þ Gi
rmT

r ; VmTi ¼ vmTi $ Gr
imTr : (4.34)

2. Two important tensors are defined here10, curvature and torsion:

$Rm
nsl ¼ vsG

m
nl $ vlG

m
ns þ Gm

rsG
r
nl $ Gm

rlG
r
ns and S

l
½mn( ¼ Gl

mn $ Gl
nm:

(4.35)

3. A parallel transport along a curve xðtÞ is defined by VxT ¼ xkVkT ¼ 0;
ðx ¼ xðtÞÞ. A geodesic line is generated by the parallel transport of its tan-
gent. Apart from a Euclidian space, a geodesic rectangle is broken by a gap in
two terms: the first, in dt2, depends on torsion, while the second, of the
order of oðdt3Þ, depends on curvature.

4. In a twisted space ðSl½mn(s0Þ, a geodesic loop is an arc of helicoid, with a
“thread” of the second order: the order of an area. Something similar hap-
pens in a spin fluid: the angular momentum of a droplet is of higher order
than the spin (Costa de Beauregard, 1983; Weyl, 1950). Now, Rodichev
considers the case of a flat, twisted space: with torsion ðGl

½mn( ¼ Sl½mn(s0Þ
but straight geodesics ðGl

ðmnÞ ¼ 0Þ, and with the following connection
and covariant spinor derivative:

Gl½mn( ¼ Slmn ¼ F½lmn(; VmJ ¼ vmJ$ i
4
F½lmn(gmgnJ (4.36)

and the following Lagrangian density:

L ¼ 1
2

*
j gmVmj$

&
Vmj

'
gmj

+
: (4.37)

10 When Ri
qkl ¼ Sl½mn( ¼ 0, the space is Euclidian.
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Translating the last formula in our notation, it gives:

L ¼ 1
2

.
j gmvmj$

&
vmj

'
gmj$ i

2
F½mnl(jgmglj

/
: (4.38)

Introducing the axial dual vector Fm ¼ i
3! ε½mnls(F½nls(, the Lagrangian

becomes

L ¼ 1
2

*
j gmvmj$

&
vmj

'
gmj$ Fmjgmg5j

+
; (4.39)

which gives the following equation:

gm

!
vm $

1
2
Fmg5

"
j ¼ 0: (4.40)

With Fm ¼ 2g
Zc Bm, this is our equation [Eq. (2.16)]. Let us note that Rodi-

chev did not introduce Fm as an external field: it was only a geometrical
property. But in our case, we can say that a monopole plunged into an elec-
tromagnetic field induces a torsion in the surrounding space.

Rodichev ignored the monopole. He did not aim at the linear equation
[Eq. (2.16)], but rather at a nonlinear equation, through the following Ein-
stein-like action integral without an external field:

S ¼
Z

ðL $ bRÞ d4x; (4.41)

where L is given by Eq. (4.39), b ¼ Const, R ¼ total curvature, and

R ¼ F½lmn(F½lmn( ¼ $6FmFm: (4.42)

Hence, Eq. (4.41) becomes

S ¼
Z

1
2

*,
j gmvmj$

&
vmj

'
gmj$ Fmjgmg5j

-
þ 6bFmFm

+
d4x:

(4.43)

If we vary S with respect to F, we find

Fm ¼ 1
24b

jgmg5j

R ¼ $ 1
4b

&
jgmg5j

'&
jgmg5j

'
:

(4.44)

Now, the variation of S with respect toJ gives the following nonlinear
equation, in which we recognize the Heisenberg equation (Borne, Lochak,
& Stumpf, 2001), up to the coefficient
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gmvmj$ 1
48b

&
jgmg5j

'
gmg5j ¼ 0: (4.45)

In so doing, we come back once more to the monopole, but now in the nonlinear
case because Eq. (4.45) is a particular case of Eq. (4.2), by virtue of Eqs.
(2.23), (2.24), and (4.44), which gives

R ¼ 1
4b

&
u2
1 þ u2

1
'
: (4.46)

It means that the fundamental chiral invariant ðu2
1 þ u2

1Þ that we
defined, apart from a constant factor, is the curvature of the twisted space
created by the self-action of the monopole, expressed in the equation by
the identification of the torsion with the total curvature in Eq. (4.36).
This confirms the link between our monopole and a torsion of the space.

CHAPTER 5

The Dirac Equation on the Light Cone.
Majorana Electrons and Magnetic Monopoles

5.1 INTRODUCTION. HOW THE MAJORANA FIELD
APPEARS IN THE THEORY OF A MAGNETIC
MONOPOLE

In the first chapters of this book, we have developed the theory of a
massless linear monopole, the quantized magnetic charge of which general-
izes the Dirac formula. The neutrino appears as the fundamental zero state of
the magnetic charge. The monopole is massless because the linear Dirac mass

term would violate the chiral gauge invariance J/exp
$
i gZc g5f

%
J, which

ensures the conservation of magnetism.
Nevertheless, in Chapter 4, we gave a generalization [Eq. (4.2)] of the

linear equation [Eq. (2.16)], owing to the introduction of a nonlinear mass
term, which is invariant with respect to the chiral gauge. There is an infinite
family of such mass terms depending on an arbitrary function of a chiral invar-
iant that is equal (up to a constant factor) to the space curvature.

Now we shall reexamine the problem of mass in another way. We shall
consider the Dirac equation on the relativistic light cone, which gives a
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generalization of the Majorana condition. This result was achieved in Lochak
(1987a,b, 1992, 2004). The main idea is that the Majorana condition, which
reduces the Dirac equation to an abbreviated form, will be replaced by
the condition that the chiral invariant equals zero, which is equivalent to writ-
ing the Dirac equation on the relativistic light cone if we define the light
cone by the condition that the electric current (i.e., the velocity of the par-
ticle) is isotropic:

JmJm ¼ 0; (5.1)

However, by virtue of the algebraic relations [Eq. (2.24)]:

$JmJm ¼ SmSm ¼ u2
1 þ u2

2
,
¼ 4

&
xþh

'&
hþx

'
in the Weyl representation

-
:

Thus, Eq. (5.1) means that the chiral invariant equals zero on the light
cone:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
¼ 0 (5.2)

It must be noted that this definition is compatible with the conservation
of electricity and magnetism because r is invariant under the ordinary gauge
and the chiral gauge. Let us now consider the equations of the magnetic
monopole (given in Chapter 4), with a nonlinear mass term.

So we have, in the Dirac representation:

gm

$
vm $

g
Zc

g5Bm

%
Jþ 1

2
mðrÞc
Z

ðu1 $ ig5u2Þ ¼ 0: (5.3)

And then, in the Weyl representation:

1
c
vtx$ s:Vx$ i

g
Zc

ðW þ s: BÞxþ i
m
&
2
00xþh

00'c
Z

&
hþx

'
h ¼ 0

1
c
vthþ s:Vhþ i

g
Zc

ðW $ s: BÞhþ i
m
&
2
00xþh

00'c
Z

&
xþh

'
x ¼ 0

*
Bm ¼ ð$iB;W Þ

+
:

(5.4)

These equations are invariant with respect to the chiral gauge transfor-
mation, and they represent a magnetic monopole. It was shown in Chapter 4
that the solutions of such equations as Eqs. (5.3) and (5.4) are divided into
bradyon states (slower than light), tachyon states (faster than light), and
luxon states (at the speed of light).

Just like the linear equations of the monopole, these nonlinear equations
admit a nonlinear neutrino as a particular case for a zero charge g ¼ 0, which
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means that such a nonlinear neutrino must have the same three states as the
nonlinear monopole: bradyon, tachyon, and luxon. This hypothesis was
previously formulated in another frame by Mignani and Recami (1975)
and Recami and Mignani (1976).

Now the luxon state corresponds to the cancellation of the mass terms in
Eqs. (5.3) and (5.4), which are thus reduced to the linear equations [Eqs.
(2.16) and (3.4)]. But here, it does not mean a simple elimination of the
mass term by the annihilation of a mass coefficient because m is not a simple
coefficient, but a function. So that means a nonlinear condition on the wave
functions:

r ¼ 0 0 u1 ¼ u2 ¼ 0 0 xþh ¼ 0: (5.5)

The cancellation of the nonlinear term under the condition [Eq. (5.5)]
does not imply the cancellation of the wave. The condition [Eq. (5.5)] is
not exactly equivalent to the Majorana condition (Majorana, 1937;
McLennan, 1957), which reads as j ¼ jc ðjc ¼ jcharge conjugatedÞ. Rather,
it gives a slightly more general condition (Lochak, 1985):

j ¼ e2i
e
Z c qg2j

* ¼ e2i
e
Z c qjc 0 x ¼ e2i

e
Z c qis2h*; h ¼ $e2i

e
Z c qis2x*;

(5.6)

where qðx; tÞ is an arbitrary phase (the coefficient 2e=Zc will be useful later).
In other words, the j state defined by Eq. (5.6) is its own charge-

conjugate, but up to an arbitrary phase: this is almost the Majorana condi-
tion, which gives not exactly the Majorana-abbreviated equation. Later,
we shall consider an equation that will not be abbreviated from the linear
Dirac equation of the electron, but from the nonlinear equation of the
monopole.

The fact that such a condition arises from the monopole theory leads us
to explore it more precisely. Since the abbreviated Majorana equation was
already suggested as a possible equation for the neutrino, we can ask: why
would this not be the case for a magnetic monopole?

Nevertheless, for now we shall consider not the magnetic case, but the
electric one. And we want to issue an initial warning: Do not be disap-
pointed that we will be looking at the electric case for a longer time than
the magnetic one. The reason for this is that, the magnetic case is far
much complicated than the electric one, and that the last is interesting in
itself. And it is not so elementarydand not only that, it is illuminating for
our subject.
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5.2 THE ELECTRIC CASE: LAGRANGIAN
REPRESENTATION AND GAUGE INVARIANCE OF
THE MAJORANA FIELD

Several authors (e.g., McLennan, 1957; Case, 1957; Berestetsky,
Lifschitz, & Pitaevsky, 1972) have written about the problem of a Lagran-
gian representation of the Majorana field, and they concluded that such a
representation is impossible. We shall see that that is wrong, but it is inter-
esting to see where the difficulty is.

Using Eq. (2.11) and the Majorana condition, j ¼ jc , for an electrically
charged particle in the presence of an electomagnetic field, the Majorana
equation may be written as

gm

!
vm$

ie
Zc

Am

"
jþ m0c

Z
jc ¼ 0: (5.7)

If we try to find a Lagrangian for such an equation directly, it must con-
tain a term like the following:

jjc ¼ jþg4g2j
*: (5.8)

But we have, on the other hand:

gk ¼ ia4ak ðk ¼ 1; 2; 3Þ; g4 ¼ a4

ak ¼
(
0 sk
sk 0

)
; a4 ¼

(
I 0
0 $I

)
; ðsk ¼ Pauli matricesÞ:

(5.9)

Introducing these expressions into Eq. (5.8), we have jjc ¼ 0, and the
corresponding term disappears from the Lagrangian, which is precisely the dif-
ficulty. But we shall proceed in another way: we consider the Majorana field
as a constrained state of the Dirac field and express this constraint under the
form of Eq. (5.5). Thus, we define theMajorana Lagrangian as a Dirac Lagran-
gian LD, to which we add a constraint term with a Lagrange parameter l:

LM ¼ LD þ l

2

&
u2
1 þ u2

2
'
: (5.10)

u1 and u2 are taken from Eq. (2.18), so that the variation of LM , with
respect to j, gives

gm

!
vm$

ie
Zc

Am

"
jþ m0c

Z
jþ lðu1$ iu2g5Þj ¼ 0: (5.11)
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This equation looks like our nonlinear equation [discussed in Chapter 4
and Lochak (1984, 1987a,b)], but here we have a mass term and an electric
potential instead of the magnetic potential. In this form, the equation was
found by Hermann Weyl (1950) and rediscovered later by other authors.
The aim of Weyl (related to general relativity) was very different from ours.

Now, we vary the Lagrangian LM [Eq. (5.10)] with respect to l, which
gives, using Eq. (5.6):

gm

!
vm$

ie
Zc

Am

"
jþ m0c

Z
e2i

e
Zc qjc ¼ 0 (5.12)

It is the Majorana equation [Eq. (5.7)] with an arbitrary phase q. We could
write q ¼ 0 in order to find Eq. (5.7), but that would be a bad idea because
this phase is important: owing to this phase, Eq. (5.12) is gauge-invariant,
while Eq. (5.7) is not. (By the way, nobody was worried about gauge-
invariance)

In this case, the gauge invariance of Eq. (5.12) is a trivial consequence of
the invariance of the Lagrangian [Eq. (5.10)]. But the invariance of Eq.
(5.12) also can be directly demonstrated after the transformation:

j/ei
e
Zc 4j; Am/Am $ vm4; q/qþ 4: (5.13)

Nowdand only nowdthe phase q may be absorbed in the gauge and
disappear. Therefore, we must first choose the gauge and only then cancel
q to find Eq. (5.7).

Therefore, the Majorana equation cannot be considered as independent:
it is only the equation of a particular state (defined by a Lagrange multiplier)
of the Dirac equation of the electron. And it is not gauge-invariant: only
Eq. (5.11) is invariant. Nevertheless, we shall see that the Majorana equation
may be considered itself, but this second interpretation is not equivalent to
the preceding one.

5.3 TWO-COMPONENT ELECTRIC EQUATIONS.
SYMMETRY AND CONSERVATION LAWS

Now, owing to Eq. (3.4), we find the Weyl representation of the class
of the definite solutions of the Dirac equation:

&
p0þ p:s

'
x$ im0ce

2ie
Zc qs2x* ¼ 0; (5.14a)

&
p0$ p:s

'
hþ im0ce2i

e
Zc qs2h* ¼ 0; (5.14b)
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p0 ¼
1
c

!
iZ

v

vt
þ eV

"
; p ¼

$
$ iZVþ e

c
A
%
;
*
Am ¼ ðA; iV Þ

+
: (5.15)

Eq. (5.14) is manifestly C-, P-, and T-invariant, but it is interesting to
verify this property directly. Elementary calculations show, indeed, that
the system [Eq. (5.14)] remains invariant by the following transformations
using the Curie laws or those deduced from them (as covered in Chapter 4
and Poincaré, 1896):

ðCÞ : i/$i; e /$e; x/e2i
e
Zc qis2h*; h/$e2i

e
Zc qis2x*

ðPÞ : x /$x; A/$A; x/ih h/$ix

ðTÞ : e/$ e; t /$t;V /$V ;h/s2x*; x/$s2h*:
(5.16)

The P transformation can be written in another way:

&
P
'
: x /$x; A/$A; x )/ h; q/qþ p

2
Zc
e
: (5.17)

And the gauge transformation takes the following form:

x/ei
e
Zc 4x; h/ei

e
Zc 4h; A/A$ V4; V/V þ 1

c
v4

vt
; q/qþ 4:

(5.18)

It can be verified that the system [Eq. (5.14)] remains invariant under
Eq. (5.18), which entails the conservation [Eq. (3.7)] of the chiral currents.
It is important to note this conservation because it is true for a magnetic
monopole (see Chapter 3), and here we see that it is also true for the solu-
tions of the Dirac equation in the abbreviated case of an electron, restricted

by the constraint r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
¼ 0 [Eq. (5.5)]. But this splitting into two

equations is not applicable in the general case of the Dirac equation, which
conserves only the electric current (the sum of the chiral currents), but not
the magnetic current (see Chapter 3).

In the abbreviated electric case, the electric current is isotropic, the sol-
utions of the Dirac equation are on the light cone, and the magnetic current
disappears. Given that the expressions in Eq. (5.14) are split by the condition
xþh ¼ 0, we can restrict ouselves, to only one of themdsay the first oned
and consider it in itself. This restricted equation is a chiral state of the elec-
tron. The second expression of Eq. (5.14) is the chiral conjugate of the first
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one, which means, owing to Eq. (5.16), that the image in a mirror is the time
inverse of the first expression of Eq. (5.14).

5.4 THE CHIRAL STATE OF THE ELECTRON IN AN
ELECTRIC COULOMB FIELD

Majorana considered that the equality j ¼ jc , introduced in the Dirac
equation, gives something similar to a joint theory of the electron and the
positron. But this is not the case because the preceeding equality is only a
constraint imposed to the electron. Nevertheless, we have found a hybrid
state: a kind of mixture of the electron and the positron. To show this,
we shall solve the first expression of Eq. (5.14) in an electric coulomb field
by introducing the following expressions:

eV ¼ $ e2

r
; A ¼ 0; q ¼ p

4
Zc
e
: (5.19)

These give the following equation:
(
1
c

!
iZ

v

vt
$ e2

r

"
$ iZs:V

)
xþ m0cs2x* ¼ 0: (5.20)

The difficulty obviously lies in the complex conjugated x*. So let us
introduce the spherical functions with spin (Kramers, 1964; Bohm, 1960;
Akhiezer & Berestetsky, 1965):

Um
[ ðþÞ ¼

2

66666664

!
[þ m
2[þ 1

"1
2

Ym$1
[

!
[$ mþ 1
2[þ 1

"1
2

Ym
[

3

77777775

; Um
[ ð$Þ ¼

2

66666664

!
[$ mþ 1
2[þ 1

"1
2

Ym$1
[

$
!
[þ m
2[þ 1

"1
2

Ym
[

3

77777775

;

(5.21)

in which Ym
[ are the Laplace spherical functions ([ ¼ 0; 1; 2; :::;

m ¼ $[; $ [þ 1; :::; [$ 1; [):

Ym
l ðq;4Þ ¼

ð$ 1Þm

2l l!

!
2l þ 1
4p

"1
2
!
ðlþ mÞ!
ðl $ mÞ!

"1
2 eim4

sinlq
dl$m

dql$m sin
2lq: (5.22)

Now, we have the following equalities (for more information, see
Appendix A of this chapter):
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s:n Um
l$1ðþÞ ¼ Um

l ð$Þ; s:n Um
l ð$Þ ¼ Um

l$1ðþÞ

s:n s2 U*m
l$1ðþÞ ¼ ið$1Þmþ1U$mþ1

l ð$Þ

s:n s2 U*m
l ð$Þ ¼ ið$1ÞmU$mþ1

l$1 ðþÞ

(5.23)

n ¼ r
r
; x ¼ rcos4sinq; y ¼ rsin4sinq; z ¼ rcosq n! ¼ r

r
;

x ¼ rcos4sinq; y ¼ rsin4sinq; z ¼ rcosq:
(5.24)

We look for a solution of Eq. (5.20) of the following form:

x ¼
X

m
Fm
[$1ðt; rÞ U

m
[$1ðþÞ þ

X

m0

Gm0

[ ðt; rÞ Um0

[ ð$ Þ: (5.25)

But it is impossible to separate the variables t and r immediately. It is only
possible to separate the angular variables 4 and q. Following a classical pro-
cedure in the Dirac theory (Kramers, 1964; Akhiezer & Berestetsky, 1965),
we introduce Eq. (5.25) into Eq. (5.20), multiplying the left side by s:n.
Owing to Eq. (5.23), we find

1
c

!
iZ

v

vt
$ e2

r

""

Fm
[$1 U

m
[ ð$Þ þ

X

m0

Bm0

[ Um0

[$1ðþÞ

#

¼ iZs:n s:V
(P

m
Fm
[$1U

m
[$1ðþÞ þ

X

m0

Bm0

[ Um0

[ ð$ Þ

#

$im0c

"
X

m
ð$1Þmþ1F*m

[$1U
$mþ1
[ ð$ Þ þ

X

m0

ð$1Þm
0
B*m0

[ U$m0þ1
[ ðþ Þ

#

:

(5.26)

The right-hand side is simplified owing to the classical relations:

s:n s:V ¼ v

vr
$ 1

r
s:L; (5.27)

where L is the orbital moment:

L ¼ $ir" V: (5.28)

Now, we have other relations as follows (see Appendix B in this chapter):

s:L Um
[$1ðþÞ ¼ ð[ $ 1Þ Um

[$1ðþÞ
s:LUm

[ ð$Þ ¼ $ð[þ 1Þ Um
[ ð$ Þ; (5.29)
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so that, taking into account the fact thatUm
[ ð)Þ are orthonormal, we deduce

from Eq. (5.26) the following system from which the angles are eliminated:
!
1
c
v

vt
þ i

a

r

"
Fm
[$1 ¼

!
v

vr
þ 1þ [

r

"
Bm
[ þ cð$1ÞmF*$mþ1

[$1

!
1
c
v

vt
þ i

a

r

"
Bm
[ ¼

!
v

vr
þ 1$ l

r

"
Fm
[$1 $ cð$1ÞmB*$mþ1

[

(5.30)

m ¼ $l;$l þ 1; :::; l $ 1; l; a ¼ e2

Zc
; c ¼ m0c

Z
: (5.31)

In a subsequent step, we take the complex conjugate form of Eq. (5.30),
changing m/$mþ 1:
!
1
c
v

vt
$ i

a

r

"
F*$mþ1
l$1 ¼

!
v

vr
þ 1þ l

r

"
B*$mþ1
l $ cð$1ÞmFm

l$1

!
1
c
v

vt
$ i

a

r

"
B*$mþ1
l ¼

!
v

vr
þ 1$ l

r

"
F*$mþ1
l$1 þ cð$1ÞmBm

l :

(5.32)

We combine Eqs. (5.30) and (5.32), introducing the new functions:

Pm
[$1

&
r
'

r
eð$1Þmiut ¼ Fm

[$1 þ ð$1ÞmF*$mþ1
[$1 ;

Qm
[$1

&
r
'

r
eð$1Þmiut ¼ Fm

[$1 $ ð$ 1ÞmF*$mþ1
[$1 ;

Rm
[

&
r
'

r
eð$1Þmiut ¼ Bm

[ þ ð$1ÞmB*$mþ1
[ ;

Sm[
&
r
'

r
eð$1Þmiut ¼ Bm

[ $ ð$1ÞmB*$mþ1
[ ;

(5.33)

with

Qm
l$1 ¼ ð$1Þmþ1P*$mþ1

l$1 ; Sml ¼ ð$1Þmþ1R*$mþ1
l : (5.34)

With the definition in Eq. (5.34), the notations [Eq. (5.33)] are invariant
under complex conjugation and m/$mþ 1. Summing and subtracting
Eqs. (5.30) and (5.32), we find a first-order system in r (see Ince, 1956):

r
dX
dr

¼ ðM þNrÞX ; (5.35)
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X ¼

2

6664

Pm
[$1

&
r
'

Qm
[$1

&
r
'

Rm
[

&
r
'

Sm[
&
r
'

3

7775; M ¼

2

6664

[ 0 0 ia

0 [ ia 0

0 ia $[ 0

ia 0 0 $[

3

7775;

N ¼

2

66666666666664

0 0 i
u0

c
$c

0 0 c i
u0

c

i
u0

c
c 0 0

$c i
u0

c
0 0

3

77777777777775

; u0 ¼ ð$1Þmu:

(5.36)

The matrix N is diagonalized by

S ¼ 1ffiffiffi
2

p

2

66666666666664

1 0
u0

mc
i
c

m

0 1 $i
c

m

u0

mc

1 0 $u0

mc
$i

c

m

0 1 i
c

m
$u0

mc

3

77777777777775

; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

c2
$ c2

r
: (5.37)

Introducing the new variable

Y ¼ SX ; (5.38)

Eq. (5.35) takes the following form:

r
dY
dr

¼

8
>>><

>>>:
imr

(
I 0

0 $I

)
þ l

(
0 I

I 0

)
þ a

m

2

6664

u0

c
s1 þ ics3 0

0 $u0

c
s1 $ ics3

3

7775

9
>>>=

>>>;
Y :

(5.39)
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Here, m is defined in Eq. (5.37), I is the unit matrix of the second order,
and s1; s3 are Pauli matrices. We shall now diagonalize Eq. (5.39), changing
the functions once more:

Z ¼
(
V 0
0 s1V

)
Y ; V ¼

(
u0

2mc

)1
2

2

666664

(
u0=c
m$ ic

)1
2

(
m$ ic
u0=c

)1
2

(
u0=c
mþ ic

)1
2

$
(
mþ ic
u0=c

)1
2

3

777775
: (5.40)

V is chosen such that

V
!
u0

c
s1þ ics3

"
V$1 ¼ ms3: (5.41)

The equation takes a new form:

r
dZ
dr

¼
.
imr

(
I 0
0 $I

)
þ [

(
0 s1
s1 0

)
þ ia

(
s3 0
0 s3

)/
Z; (5.42)

and by iteration, we find
(
r
d
dr

)2
Z ¼

.
$m2r2 þ mr

!
i
(
I 0
0 $I

)
$ 2a

(
s3 0
0 s3

)"
þ [2 $ a2

/
Z:

(5.43)

All the matrices are diagonalized, and we find four independent equa-
tions for the components of Z:

(
r
d
dr

)2
Zn ¼

,
$m2r2 þ mrðiε$ 2aε0Þ þ [2 $ a2

-
Zn ðn ¼ 1; 2; 3; 4Þ

(5.44)

ε ¼ 1; 1;$1;$1; ε0 ¼ 1;$1;$1; 1 ðfor n ¼ 1; 2; 3; 4Þ: (5.45)

At this point, let us have the following:

r ¼ ir
2m

; Wn ¼ r
1
2Zn: (5.46)

Eq. (5.44) becomes, neglecting the suffix n,

d2W
dr2

þ

"

$ 1
4
þ

ε
2 $ iaε0

r
þ

1
4 þ a2 $ l2

r2

#

W ¼ 0: (5.47)
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This is a Whittaker equation (Ince, 1956; Whittaker & Watson, 1958).
The following coefficients are denoted here by k and m, keeping the classical
notation for Wk;m. They are not to be confused with the previous other
indices:

k ¼ ε
2
$ iaε0; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 $ a2

p
: (5.48)

Thus, we can take the following Whittaker functions as radial functions,
provided that they are square-integrable at the origin:

Wk;mðrÞ ¼ Wε
2$iaε0;

ffiffiffiffiffiffiffiffiffi
l2$a2

p ð$2imrÞ: (5.49)

However, in the vicinity of the origin, a regular solution of Eq. (5.47)
may be written in the following form (Ince, 1956; Whittaker & Watson,
1958), taking into account Eqs. (5.46) and (5.48):

000Wk;m

000 ¼ 2mr
1
2þm

$
1þOðrÞ

%
(5.50)

It must be noted that the same coefficient m appears in all the composants
Wn, and thus in Zn in Eq. (5.44); therefore, with the changes in Eqs. (5.46),
(5.40), (5.38), (5.34), and (5.25), we can assert that

xþx z r2ðm $ 1Þ ðin the vicinity of r ¼ 0Þ: (5.51)

So the value of m [Eq. (5.48)] shows that xþx is always integrable at the
origin because l ¼ 0; 1; 2::: But even more interesting is the behavior at the
infinity. From standard formulas, we have (Whittaker & Watson, 1958)

Wk;mðrÞ ¼ e$
1
2 rrk

$
1þO

&
r$1'

%
if

000Argð$rÞ
000 < p: (5.52)

The condition of validity is satisfied because r ¼ $2imr, by virtue of
Eq. (5.46), so that, owing to Eq. (5.48):

Wk;mðrÞ ¼ 2mr
ε
2
&
1þOðr$1' ½ε ¼ )1; as in Eq: ð5:44Þ(: (5.53)

If we now consider the change of functions xþx, we encounter some dif-
ficulty. In rz0, we had the same exponents in Eq. (5.50) for all the compo-
nents W and Z, but now the situation is different with the exponent ε

2 in
Eq. (4.35). Using Eqs. (5.46), (5.40), (5.38), (5.34), and (5.25) once more,
we find for xþx the following asymptotic form:

xþx ¼
X

ann0 rεnþεn0$3 ðfor r /NÞ; (5.54)
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where, according to Eq. (5.46), εn take the values ε ¼ )1 for the different
components of Z, which leads to several conclusions, discussed next.

5.5 CONCLUSIONS FROM THE PHYSICAL BEHAVIOR
OF A CHIRAL STATE OF A DIRAC ELECTRON
(A MAJORANA ELECTRON), IN AN ELECTRIC
COULOMBIAN FIELD

The asymptotic form [Eq. (5.54)] shows that xþx would be integrable in
the whole space only if, in the sum of the second member of Eq. (5.54), εn is
never equal to 1. The different values of εn and εn0 give terms with
r$5 ð for εnþ εn0 ¼$2Þ; r$3 ð for εnþ εn0 ¼0Þ; r$1 ð for εnþ εn0 ¼2Þ:

Now, only the first type of term gives a convergent integral as r /N.
In order for the integral of xþx to converge, we must exclude the terms
with εn ¼ 1, which implies the annihilation of the components
Z1 and Z2 in Eq. (5.42). But if we do this, we get Zh0 and the wave
function disappears.

xþx is, thus, never integrable on the whole space. Therefore, the Majorana
electron has no bound states in a Coulomb field: the spectrum is continuous
and there are only ionized states. It must be noticed that the sign of a in Eq.
(5.42) does not play just any role: the Majorana electrondmore precisely,
the Majorana state of the Dirac electrondhas a diffusive behavior of the
same type, independent of a positive or negative charge of the coulomb
field.

It is easy to understand why this is so. In the state of x [Eq. (5.25)],
which is associated with a value l$1

2 of the total kinetic momentum, the
terms corresponding to the different values m have, according to Eq.
(5.33), exponential factors eð$1Þmut , where u is the energy such that x is a
superposition of states with positive and negative energies, corresponding to the
electron or positron states.

Thus, the Majorana theory is not a “simultaneous theory of the electron
and of the positron”. It is only a hybrid state of the Dirac electron, “which
does not know” the sign of its electric charge. We understand why it cannot
be in a bound state. But its diffusing states will be very different from the
state of a fast, “normal” electron state because the wave functions are differ-
ent from the wave functions of a Keplerian system in a ionized state.

To make this fact more understandable, we shall carry out the preceding
calculation in the classical limit, and we shall see that all the trajectories are
hyperbolic, as it might be guessed, but the hyperbolas are not Keplerian. And
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given that the classical limit does not know the quantum superposition,
there are two kinds of hyperbolas corresponding respectively to the diffu-
sion, in an attractive or a repulsive field.

5.6 THE GEOMETRICAL OPTICS APPROXIMATION OF
THE STATES OF THE MAJORANA ELECTRON

Consider the general equation [the first expression of Eq. (5.14)] for x,
with the definitions [Eq. (5.15)] and the electromagnetic gauge [Eq. (5.19)].
Now, in the first expression of Eq. (5.14), we introduce the following
expression [aðt; rÞ and bðt; rÞ are new spinors]:

x ¼ aðt; rÞe$ i
Z Sðt;rÞ þ bðt; rÞeþ i

Z Sðt;rÞ: (5.55)

Neglecting the Z terms, we have the following equation:
.(

1
c

!
vS
vt

þ eV
"
$
$
VS $ e

c
A
%
:s
)
aþ m0cs2b*

/
e$

i
Z S

$
.(

1
c

!
vS
vt

$ eV
"
$
$
VS þ e

c
A
%
:s
)
b$ m0cs2a*

/
eþ

i
Z S ¼ 0:

(5.56)

ForZ/0, the phases)S
Z become infinitely fast, and, multiplying Eq. (5.56)

by e
iS
Z and e

$iS
Z , alternately, we find the geometrical optics approximation:

(
1
c

!
vS
vt

þ eV
"
$
$
VS $ e

c
A
%
:s
)
aþ m0cs2b* ¼ 0

(
1
c

!
vS
vt

$ eV
"
þ
$
VS þ e

c
A
%
:s
)
b$ m0cs2a* ¼ 0:

(5.57)

Now we introduce a new spinor bb:
bb ¼ s2b*: (5.58)

Taking the complex conjugate of the second equation [Eq. (5.57)] mul-
tiplied on the left by s2 (taking into account that s2 is imaginary, which gives
the plus sign in the second equation), one obtains for Eq. (5.57):

(
1
c

!
vS
vt

þ eV
"
$
$
VS $ e

c
A
%
:s
)
aþ m0cbb ¼ 0

(
1
c

!
vS
vt

$ eV
"
þ
$
VS þ e

c
A
%
:s
)
bb þ m0ca ¼ 0:

(5.59)
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Multiplying the first equation by the matrix before bb in the second equa-
tion, we get

.(
1
c

!
vS
vt

$ eV
"
þ
$
VS þ e

c
A
%
:s
)(

1
c

!
vS
vt

þ eV
"

$
$
VS $ e

c
A
%
:s
)
$ m2

0c
2
/
a ¼ 0

(5.60)

or
8
>><

>>:

1
c

!
vS
vt

þ eV
"!

vS
vt

$ eV
"
$
$
VS þ e

c
A
% $

VS $ e
c
A
%
$ m2

0c
2

þ 2
e
c

(
VVS þ 1

c
vS
vt

Aþ iVS " A
)
:s

9
>>=

>>;
a ¼ 0:

(5.61)

For as0, we must set equal to zero the determinant of the matrix, which
gives a Hamilton-Jacobi equation that reads, for A ¼ 0:
"
1
c2

!
vS
vt

"2

$ ðVSÞ2 $ e2

c2
V 2 $ m2

0c
2

#2
$ 4e2

c2
V 2ðVSÞ2 ¼ 0: (5.62)

The factorization of the difference of two squares gives two equations
that take the following form in the coulomb case:

1
c

!
vS
vt

"2

$
!000VS

000$
εe2

c
1
r

"2

$ m2
0c
2 ¼ 0 ðε ¼ )1Þ: (5.63)

We can see that the sign of the charge does not play any role because ε ¼
)1 not due to the charge, but to the factorization. And, still more important,
these Hamilton-Jacobi equations are different from those that are found in
the well-known problem of an electron in a coulomb field. In the latter
case, we have the following equations with two signs ε ¼ )1 as well, but
they are now due to the sign of the charge, and they correspond to two kinds
of trajectories, ellipses, or hyperbolas:

1
c

2!vS
vt

$ εe2

r

"2

$ ðVSÞ2 $ m2
0c
2 ¼ 0 ðε ¼ )1Þ: (5.64)

Now, if we introduce in Eq. (5.63) the decomposition

S ¼ $Et þW ; (5.65)
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we find

E2

c2
$ m2

0c
2 ¼

(000VW
000$

εe2

c
1
r

)2
; (5.66)

from which it follows immediately that

E , m0c2: (5.67)

This means that there is not any bound state, and thus no closed trajec-
tories. Actually, we have in Eq. (5.66) two equations:

ðVW Þ2 ¼ 1
c2

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q

þ εe2

r

"2

ðε ¼ )1Þ; (5.68)

and thus, in polar coordinates:

ðVW Þ2 ¼
!
vW
vr

"2

þ 1
r2

!
vW
v4

"2

: (5.69)

Now, if we write

W ¼ J4þ f ðrÞ ðJ ¼ Const:Þ; (5.70)

Eq. (5.68) is transformed into

f ðrÞ ¼
Z !

A2 þ 2B
r
þ C

r2

"1
2

dr; (5.71)

with

A ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q

; B ¼ Aεe2

c
; C ¼ e4

c2
$ J2: (5.72)

The discriminant in Eq. (5.71) is positive:

D0 ¼ B2 $ A2C ¼ A2J2 , 0 (5.73)

As a result, the roots are real:

1
r
¼

A
$
εe2
c ) J

%

J2 $ e4
c2

ðε ¼ )1Þ: (5.74)

Suppose now that Js0. Given that we are in the limit of a quantum
problem, we can write
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J z Z ¼ e2

ac
¼ 137

e2

c
[

e2

c
(5.75)

This approximation is not essential, but it is convenient for what follows
because we can write the positive root [Eq. (5.74)] in a simplified form:

1
r*

¼ A
J

with : r* ¼ Jcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q : (5.76)

So the trajectory defined by Eqs. (5.70) and (5.71) is now

vW
vJ

¼ 40/4$ 40 ¼ J
Z r

r*

$ 1
$
A2 þ 2B

r þ C
r2

%1
2

dr
r2
: (5.77)

Taking 40 ¼ 0, with the approximation [Eq. (5.76)], the equation of the
trajectory becomes

1
r
¼

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q

J2c2

!
εþ Jc

e2
cos4

"
ðε ¼ )1Þ: (5.78)

It is a hyperbola because by virtue of Eq. (5.75), its eccentricity is greater
than 1:

Jc
e2

> 1: (5.79)

It must be underscored that the hyperbolic character of the trajectory
already had been determined by Eq. (5.67) and not only by the simplified
form [i.e., Eq. (5.76)]. In conclusion, there are not any bound state as it
had previously been noted, but do not forget that there are two possible
types of trajectories because ε ¼ )1, the two signs corresponding to the
two equations [Eq. (5.63)]. To wit:
• If ε ¼ þ1, the concavity of the trajectory is oriented to the central field

and the motion is attractive.
• If ε ¼ $1, the convexity of the trajectory is oriented to the central field

and the motion is repulsive.
Therefore, in accordance with the quantum treatement, both cases are

possible, whatever the charges and the central field might be.
It is interesting to compare these results with the classical case of a rela-

tivistic electron in a coulombian potential: we consider the classical equation
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[Eq. (5.64)] again, introducing Eqs. (5.69) and (5.70), which gives an integral
of the same form as Eq. (5.71):

f ðrÞ ¼
Z !

A2 þ 2B0

r
þ C

r2

"1
2

dr (5.80)

A ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q

; B0 ¼ Eεe2

c2
; C ¼ e4

c2
$ J2: (5.81)

In the case of E , m0c2, in comparison with Eq. (5.72), one can see that
the only coefficient B remains, while the factorA is substituted by E=c, which
means the coincidence of these two cases for the limit E/m0c2. But it must
be noted that, in the preceding case, the condition E , m0c2 [Eq. (5.67)] was
necessary, while here, in the classical case, it is only one of two possibilities
because we could have E < m0c2, which would correspond to elliptic trajec-
tories (i.e., bound states).

Taking the preceding calculation again with the constants [Eq. (5.81)],
we find the trajectories as follows:

1
r
¼ e2E

J2c2

0

@εþ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi&
E2$ m2

0c4
'
J2 þ m2

0c2e4
q

Ee2
cos4

1

A: (5.82)

This formula, which is good only for E > m0c2, differs from the classical
formula only by the absence of the precession factor in the argument of the
cosine, which we have neglected by virtue of Eq. (5.75), and the preceding
approximation, which actually results in the replacement of C by $J2. On
the contrary, the approximation would not be valuable under the root sign
in the expression of the eccentricity except if E [ m0c2, which is the limit
to which Eqs. (5.78) and (5.82) tend.

But the interesting case arises when E $ m0c2 is small, because the eccen-
tricity of the classical hyperbola depends on E and

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi&
E2$ m2

0c4
'
J2 þ m2

0c4
q

Ee2
/1 if E/m0c2: (5.83)

Thus, the classical parabolic trajectory results when E/m0c2.
On the contrary, the eccentricity of the hyperbola [Eq. (7.78)] is inde-

pendent of energy and, consequently, from the angle between the asymp-
totes, while
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1
p
¼

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 $ m2

0c4
q

J2c2
/ 0 if E/m0c2: (5.83’)

Therefore, the parameter approches infinity, while Eq. (5.82) shows that
in the classical case, when E/m0c2, the parameter tends toward a finite
value. Consequently, for low energies, we find two different ways of behav-
ior that could be experimentally distinguished, provided that one could cre-
ate this strange, constrained state of the electron described by the Majorana
field.

5.7 HOW COULD ONE OBSERVE A MAJORANA
ELECTRON?

We have seen that in a coulomb field, at the geometrical optic approx-
imation, the Majorana electron behaves either like a particle with a negative
charge or like a particle with a positive charge, but it remains different from
an electron or a positron because its motion is not Keplerian.

Nevertheless, this is only a problem of trajectories; that is, a problem of
the rays of the wave given by the Jacobi equation. If we introduce the cor-
responding approximate expression of the action S in the expression of the
wave function [Eq. (5.55)], we find an approximate solution of the equa-
tions [Eq. (5.57)].

Therefore, we shall find that, despite that trajectories seem to “choose”
their charge (þ or e), the wave function evidently remains a superposition
state of two waves with opposite phases; that is, waves with conjugated
charges. Let us apply that concept to plane waves.

We write Eq. (5.55) with constant spinors a and b:

x ¼ a eiðut$k:rÞ þ b e$iðut$k:rÞ; (5.84)

and we introduce Eq. (5.84) into the first expression in Eq. (5.14) with V ¼
A ¼ 0, and an angle q, which is defined in Eq. (5.19). Analogous to the one
of the x 5.6, a simple computation gives

u2

c2
¼ k2 þ m2

0c
2

Z2
(5.85)

x ¼ a eiðut$k:rÞ $ Z

m0c

$u
c
$ s:k

%
s2a* e$iðut$k:rÞ: (5.86)
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This is a superposition of two waves with energies of opposite signs. But
let us return to the Dirac equation; that is, the two expressions in Eq. (5.14)
linked by Eq. (5.6), with the condition [Eq. (5.19)]. Therefore, it is not
exactly the Majorana field but the Dirac field that is constrained by
Eq. (5.5). In other words, it is the equation [Eq. (5.12)] with the value of
Eq. (5.19) for the angle q, and Am ¼ 0.

Now we must find the wave j, owing to Eq. (5.86) and

h ¼ s2x*; j ¼ 1ffiffiffi
2

p
(
xþ h
x$ h

)
: (5.87)

We shall take 0z for the direction of propagation of the wave and

a ¼
(
a1
a2

)
k ¼ f0; 0; kg; (5.88)

with a1 and a2 ¼ components of a, in Eq. (5.86). So we find

j ¼ 1ffiffiffi
2

p ðj1þ j2Þ (5.89)
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(5.90)

j2 ¼ a2

2

6666666664

0

1þ Z

m0c

!
u

c
$ k

"

0

1$
Z

m0c

!
u

c
$ k

"

3

7777777775

eiðut$kzÞ þ ia*2

2

6666666664

1þ Z

m0c

!
u

c
$ k

"

0

$
(
1$ Z

m0c

$u
c
$ k

%)

0

3

7777777775

e$iðut$kzÞ:

(5.91)
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Here, j is the superposition of two waves j1 and j2 with the constants
a1 and a2. Each wave j1 and j2 depends on energy and helicity, which is
easy to define because if Oz is the direction of propagation so that the
spin is projected in the same direction, and

s3 ¼
(
s3 0
0 s3

)
¼

2

664

1 0 0 0
0 $1 0 0
0 0 1 0
0 0 0 $1

3

775; (5.92)

then we see the following:
1. j1is a superposition of two waves with the same sign of helicity and

charge (þ and e, respectively, for each wave).
2. j2 is a superposition of two waves with opposite helicities and charges.

The relative phase of the components of j1 or j2 (i.e., a1;2 and a*1;2) has
no physical meaning because the constant q in Eq. (5.12) or (5.14) is arbi-
trary. Now, for low energies,

00k
00 - u

c
;

u

c
¼ m0c

Z
; (5.93)

we have, in a first approximation:

j1 ¼

2

664

a1eiðut$kzÞ

$ia*1e
$iðut$kzÞ

0
0

3

775; j2 ¼

2

664

i a2e$iðut$kzÞ

a*2e
iðut$kzÞ

0
0

3

775: (5.94)

In conclusion, if we could “keep alive” (i.e., keep from destroying) two
parallel-beam of electrons and positrons with the same energy and this polar-
ization for a sufficiently long time, the definite couples would have the
behavior of a Majorana electron. In particular, in a coulomb field, an elec-
tron in such a state would exhibit the strange behavior just described instead
of following the classical Kepler laws.

5.8 THE EQUATION IN THE MAGNETIC CASE

We have recalled in Eq. (5.3) the general nonlinear equation of a mag-
netic monopole, and we know that the chiral gauge invariance is broken and
the magnetic charge is no more conserved if we add a linear mass term (it is
the reason for which the Dirac equation does not conserve the magnetic
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charge). As we know (as discussed in Chapter 3), the Majorana condition
ensures the conservation of chiral currents, and thus of magnetism.

Such an equation is not really chiral gauge-invariant, but in this case, it
admits a subset of gauge-invariant solutions. Now, remember that the chiral
invariance is an invariance with respect to the rotations in the chiral plane
fu1;u2g (i.e., with respect to the rotations of an angle A), which can be
obtained in two ways:
1. The first way is to introduce in the Lagrangian a mass term that depends

only on the norm of the vector fu1;u2g; this was done until now, and it
results in Eq. (5.3).

2. The second way is to add to the Lagrangian of the linear monopole an
arbitrary mass term that is not necessarily chiral-invariant (as was the
norm of fu1;u2g), but which is such that the obtained equation has a
subset of solutions that annihilates the chiral invariant:

r ¼
&
u2
1þ u2

2
'1=2 ¼ 0: (5.95)

Such solutions thus obey the generalized Majorana condition [Eq. (5.6)],
which we write here in a simpler form:

J ¼ eiqg2j
* ¼ eiqjc: (5.96)

Actually, we can put q ¼ 0, as discussed later in this chapter. A priori, we
could start from an arbitrary term of mass, but for simplicity, we shall choose
the linear mass term of the Dirac equation. So now we can introduce, in the
equation of the massless monopole, the mass term of Eq. (2.1) under the
condition Eq. (5.95) or (5.96), which will be expressed by means of a
Lagrange multiplier. Thus, we have the Lagrangian:

L ¼ Jgm
,
vm
-
J$ gZcJgmg5BmJ$ m0cZjjþ l

&
u2
1þ u2

2
'
; (5.97)

from which, varying j, we deduce the following equation, which looks like
our nonlinear equation from Chapter 4, but with a linear term:

gm

&
vm$ gZcg5Bm

'
J$ m0cZjþ lðu1$ iu2g5ÞJ ¼ 0: (5.98)

The difference between this equation and the equation of our nonlinear
monopole is the presence of a linear mass term and of the constant l instead
of mðr2Þ. But the linear term will be transformed, and the nonlinear term
itself will disappear because we must vary L with respect to the Lagrange
multiplier l, in order to find Eq. (5.95). Thus, we have

u1 ¼ u2 ¼ 0; (5.99)
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which gives Eq. (5.97) and annihilates the l term in Eq. (5.98). The Lagrange
multiplier thus remains undetermined, since it does not appear in the equa-
tion. If we introduce Eq. (5.96), we find the Majorana equation up to a
phase factor eiq, with a magnetic interaction instead of an electric one:

gm

&
vm$ gZcg5Bm

'
J$ m0cZeiqg2j

* ¼ 0: (5.100)

It is a new, nonlinear equation of a magnetic monopole, different from
the one found earlier. In the Weyl representation (discussed in Chapter 3),
Eq. (5.100) splits into two equations that are formally separated, but are
actually linked to each other:

&
pþ
0þ pþ$s

'
x$ im0ceiqs2x* ¼ 0&

p$
0 $ p$$s

'
hþ im0ceiqs2h* ¼ 0;

(5.101)

with the following definitions:

pþ
0 ¼ 1

c

!
iZ

v

vt
þ gW

"
; pþ ¼ $iZ

v

vt
þ g

c
B

p$
0 ¼ 1

c

!
iZ

v

vt
$ gW

"
; p$ ¼ $iZ

v

vt
$ g

c
B:

(5.102)

We can remark that, in the electric case, we had only one operator fp0;pg,
while in the magnetic case, we have two operators: right and left. Before examining
Eq. (5.101), we must take a moment to specify some points concerning
Eq. (5.98).

First, this equation was found a long time ago by Weyl (1950), only for a
free wave (i.e., without interaction), and with another aim. For Weyl, the non-
linear termwas not a Lagrange condition. Rather, it was a change of the Dirac
equation, owing to which the nonlinearWeyl equation (contrary to the Dirac
linear equation) has the property of keeping the same form, in general rela-
tivity, if it were expressed in metric form with an affine connection Gmln,
depending on gmn; or with coefficients Gmln, independent of gmn.

In various forms, the same equation without interactions was later found
again by several authors and reexamined from different points of view. Two
papers are particularly interesting with respect to this problem:
1. The first (Rodichev, 1961) already has been discussed in Chapter 4. Just

recall that it is based on a particular case of Eq. (5.98), where l is an ordi-
nary constant:

gmvmJþ lðU1$ iU2g5ÞJ ¼ 0: (5.103)
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It was shown (both in Chapter 4 and Lochak, 1985e) that the chiral
invariant is equal, up to a constant factor, to the total curvature. But in
this case, the space is flat and the curvature is reduced to the torsion, so
that when we show that the Majorana condition [Eq. (5.96)] is equivalent
to the condition [Eq. (5.95)] it actually signifies that the Majorana condition
annihilates the torsion of the space.
2. Nowwe give results due to A. Bachelot (1988a,b), who solved the global

Cauchy problem for Eq. (5.103) without electromagnetic interaction,
but with initial conditions that are not supposed to be small: they are
only so to the extent that the chiral invariant r ¼ ðu2

1þ u2
2Þ

1=2 is small.
In other words, it remains in the vicinity of the condition [Eq. (5.95)],
which, as already established, is close to the generalized Majorana
condition.
To prove his theorem, Bachelot first proved the following lemma, which

is of great interest in itself:
• Consider the Dirac equation without interaction, but with a mass term

M, possibly depending on space and time:

gmvmJþMj ¼ 0 (5.104)

Bachelot proved that if the chiral invariant r ¼ ðu2
1þ u2

2Þ
1=2 vanishes at

a given instant in the whole space, it remains equal to zero later. It is easy to
generalize the lemma of Bachelot in the presence of a magnetic interaction, and
we shall directly formulate and prove it in this more general case.
• Given the equation

gm
&
vmJ$ gZcg5Bm

'
J$ m0cZj ¼ 0; (5.105)

if at a given instant, the chiral invariant r ¼ ðU2
1þ U2

2Þ
1=2 (and so, the

torsion of the space) vanishes in the whole space, il remains equal to zero.
Bachelot starts from two conservation laws:

vmjgmj ¼ 0; vm~jg2g4gmj ¼ 0
&
~j ¼ transposed j

'
: (5.106)

The first law is the conservation of the Dirac current (i.e., of electric-
ity). It must be noted that the chiral currents are not separately conserved,
contrary to Eq. (3.7), because of the presence of a linear mass term in Eq.
(5.105); but their sum is conserved as in the Dirac equation, and this sum is
precisely the Dirac electric current that appers in Eq. (5.106).
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The second law is the conservation of the crossed current between
charge-conjugated states. Bachelot deduced it from Eq. (5.104), but it is
also true for Eq. (5.105), with a magnetic interaction. On the contrary,
the second conservative law would be wrong in the case of an ordinary Dirac
equation with an electric interaction. Indeed, we get in this case:

vm~jg2g4gmjþ iAm
~jg2g4gmj ¼ 0: (5.107)

Now, if these two laws [Eq. (5.106)] are true, Bachelot uses the conser-
vation laws, as follows:

Z

R3

00j
002dx ¼ Const;

Z

R3

~jg2jdx ¼ Const; (5.108)

provided that these integrals do exist. This reservation must be demanded
because we know that there are no bound states between an electric and a
magnetic charge (Lochak, 1983, 1984), so that this result is not general.

Under the preceding restriction, we find from Eq. (5.108):
Z

R3

00J$ eiqg2j
*002dx ¼ 2

Z

R3

*00J
002 $ <e$iq~jg2j

*+dx ¼ Const: (5.109)

Therefore, if at a given instant, Eq. (5.95), or, equivalently, Eq. (5.96) is
realized, it also will be realized in the future. This is known as the lemma of
Bachelot, and we know that it is true not only for Eq. (5.104), but also for
Eq. (5.105).

If the preceding formulas are true, the condition to which Eqs. (5.100) and
(5.101) were submitted through the Lagrange multipliers will be strongly
weakened because instead of a constraint imposed at every instant, we have
only an initial condition. Therefore, the Majorana magnetic states are simply
particular solutions of the Dirac equation that have a magnetic interaction.

More precisely, these states are monopole states of the Dirac equation because
it will be shown that Eq. (5.100) or (5.101) is actually chiral-invariant,
despite the fact that Eq. (5.105) is not chiral-invariant. They represent a cou-
ple of monopoles and, in order to make them appear, it is sufficient to satisfy
an initial condition, at least in certain cases.

Let us emphasize, once more, that by virtue of Eq. (5.107), this conclu-
sion, which is true in the magnetic case, is not true in the electric case. So
that, if we are able to satisfy the conditions [Eq. (5.95)], we shall obtain
monopoles, but not electrons.
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5.10 ANOTHER POSSIBLE EQUATION: THE GAUGE
INVARIANCE PROBLEM

At this point, let us introduce the transformation J/eigZcg5FJ
(discussed in Chapter 4) in Eq. (5.100). Here, we find

gm

,
vmJ$ gZcg5

&
Bmþ ivmF

'-
eigZcg5FJ$ m0c=Zeiqg2e

$igZcg5Fj* ¼ 0:

(5.110)

And then, taking into account the anticommutation rules of g matrices:

gm
&
vmJ$ gZcg5

&
Bmþ ivmF

'
J$ m0c=Zeiqg2j

* ¼ 0:
-,

(5.111)

We find the correct interaction term with the Bm potentials, but with a
phase factor F, the origin of this factor is the angle A. The chiral gauge
invariance is not obvious, as could be expected, because this invariance in
its general form appears only in the equations in which the chiral angle A
does not appear, whereas in the present case, we started from Eq. (5.105),
which is not chiral gauge-invariant. We have just imposed one of the con-
ditions [i.e., Eq. (5.95)], which does not make the angle A disappear, but it is
undetermined. That is, this angle appears in the equation, but its value can
be eliminated if it is a polar angle around a nil rotation vector.

Finally, the preceding phase factor is eliminated by a choice of angle A
because the gauge invariance is lost, and the phase q may be eliminated as
well because it plays no dynamical role. Thus, we can write, as a conse-
quence of Eq. (5.95):

J ¼ g2j
* ¼ jcx ¼ is2h*h ¼ $is2x*: (5.112)

And instead of Eqs. (5.100) and (5.101), we have (without q)

gm

&
vm$ gZcg5Bm

'
J$ m0cZg2j

* ¼ 0 (5.113)

and [see Eq. (5.102)]
&
pþ
0þ pþ$s

'
x$ im0cs2x* ¼ 0&

p$
0þ p$$s

'
hþ im0cs2h* ¼ 0:

(5.114)

5.11 GEOMETRICAL OPTIC APPROXIMATION

Until now, all seems well, but it would be desirable to test the qualities
of the preceding equations for a well-known case, such as the interaction of a
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monopole with an electric charge, as it was done previously in the compa-
rable case of the electron, replacing Eq. (5.14) with Eq. (5.114). This seems
easy because of the apparent identity of both equations. Unfortunately, that
is not so because the potentials hidden in these formulas are fundamentally
different, so the magnetic case is far more complicated than the electric one.
And this case is more difficult than the case of a linear, massless monopole (as
discussed in Chapter 3), precisely because of the nonlinear mass term.

For these reasons, we shall be content with the classical approximation.
Thus, we shall take Eq. (5.114) with pþ and p$ defined in Eq. (5.102), with
the following expressions:

x ¼ aexpð$iS=ZÞ þ bexpðiS=ZÞ; h ¼ $is2x*: (5.115)

A calculation analogous to the one in x 5.6 gives an equation of the
Hamilton-Jacobi type:
"!

1
c
vS
vt

"2

$
!
VS þ gB

c

"2

$ m2
0c
2

#"!
1
c
vS
vt

"2

$
!
VS $ gB

c

"2

$ m2
0c
2

#

¼ 4m2
0g

2B2:

(5.116)

This is very different from Eq. (5.61) because of the difference in the
potentials (see Eq. (1.26) in Chapter 1):

W ¼ 0; Bx ¼
e
r

yz
x2 þ y2

; By ¼
e
r

$xz
x2 þ y2

; Bz ¼ 0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

(5.117)

The electric coulomb field is written as

E ¼ curl B ¼ er
1
r3: (5.118)

Now, it must be recognized that Eq. (5.116) is not the equation of a
classical magnetic monopole in the presence of an electric charge, which
would be

E ¼ curl G ¼ er
1
r3

and so

either :
,
ðvS=vtÞ2

1
c2 $ ðVS þ gB=cÞ2 $ m2

0c
2- ¼ 0 (5.119)

or :
,
ðvS=vtÞ2

1
c2 $ ðVS $ gB=cÞ2 $ m2

0c
2- ¼ 0: (5.120)
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depending on the sign of the magnetic charge. The simultanuous presence
of both brackets, ðVS þ g B=cÞ and ðVS $ g B=cÞ, in Eq. (5.116) suggests
that the equation contains a couple of monopoles of opposite signs, and one
can observe that, far from the center of the electric charge, B/0; and that
Eq. (5.116) splits into two components: Eqs. (5.119) and (5.120). Thus, we
actually find, asymptotically, a couple of classical monopoles. This may be
called the zero approximation. The first-order equations (nearer to the center)
may be written as

h
ðvS=vtÞ2

1
c2 $

&
V
/
Sþ g B=c

'2 $ m2
0c
2
i
¼ 2m0g

00G
00

h
ðvS=vtÞ2

1
c2 $

&
V
/
S $ g B=c

'2 $ m2
0c
2
i
¼ $2m0g

00G
00:

(5.121)

These equations have additive terms with respect to Eqs. (5.119) and
(5.120).

It is interesting to introduce, in one of these equations, these two
quantities:

p ¼ VS ¼ m
dr
dt
; l ¼ egc

ε
ðε ¼ energyÞ; (5.122)

which results in the following equation:

d2r=dt2 ¼ $l
1
r3$dr=dt " r $ m0g

00B
00: (5.123)

Without the second term of the second member, this is the Poincaré
equation [i.e., Eq. (1.2)] of the interaction between an electric and a mag-
netic charge in classical mechanics. Remember that we already obtained
such an equation, at the geometrical optic limit of our equation of a massless
monopole in Chapter 3.

Nevertheless, we cannot neglect this strange additional term that appears
in Eq. (5.123), and which is the same term as in Eqs. (5.116), (5.121), and
(5.122): a kind of reminder of the sin of introducing a linear mass term,
which disappears far from the center of the charge but which calls for a cer-
tain caution concerning the “Majorana monopole.”

It must be added that the importance of the Poincaré equation comes not
only from the fame of its author, but from the fact that this equation is
experimentally verified by the Birkeland effect (as discussed in Chapter 1).
It is the equation of the motion of a beam of cathodic rays in the presence
of a pole of a linear magnetdactually, a magnetic monopole. This is why we
have attached great importance to the fact that the Poincaré equation is the
classical limit of our equation of the magnetic monopole.
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It is, thus, impossible to be indifferent to a violation of the Poincaré
equation. Yet it is not a total invalidation of theMajorana monopole because
the additive term is always the same, and it tends to zero in two cases:
1. If the proper mass tends to zero, this monopole tends to our massless monopole.

But this case is not significant because it is evident from Eqs. (5.113) and
(5.114) that the nonlinear Majorana term tends to zero.

2. Far from the center of the charge, which is due to the potentials and is not
evident from Eqs. (5.113) and (5.114). This gives the Majorana monop-
ole an asymptotic significance. However, it must be noted that, far from
the center, the additive terms become negligible; but unfortunately, the
potential terms become negligible too, so the Majorana monopole tends to
our massless monopole when it is no more a monopole.

APPENDIX A

In this appendix, let us give a proof of Eq. (4.6). First, we know that by
the very definition of Um

l ð$Þ and Um
l ðþÞ, we get

J2Um
l$1ðþÞ ¼ jðjþ 1ÞUm

l$1ðþÞ; j ¼ l $ 1
2

and (A.1)

JzU
m
l ð$ Þ ¼ uUm

l ð$ Þ; JzU
m
l$1ðþÞ ¼ uUm

l$1ðþÞ; u ¼ m$ 1
2
; (A.2)

where we have

J ¼ L þ s; L ¼ $i r" V: (A.3)

Now, we can easily verify that the operator

s:n ¼ 1
r
s:r ¼

(
cosq sinqe$if

sinqeif $cosq

)
(A.4)

commutes with J:

½J; s:n( ¼ 0: (A.5)

Therefore, s:n transforms a subspace U that belongs to the subspace of
eigenvalues of J2 and Jz in an element of the same subspace. For instance,
we have

s:n Um
l ðþÞ ¼ AUm

l ðþÞ þ BUm
lþ1ð$Þ; (A.6)
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where the constants A and B do not depend on m. We shall compute them
for particular values of m and of the polar angles as follows:

m ¼ l þ 1; q ¼ p

2
; f ¼ 0: (A.7)

From Eq. (5.21), we have

Ulþ1
l ðþ Þ ¼

2

4Yl
l

$p
2
; 0
%

0

3

5; Ulþ1
lþ1ð$ Þ ¼

2

66664

!
l

2l þ 3

"12

Yl
lþ1

!
p

2
; 0
"

$
!
2l þ 2
2l þ 3

"12

Ylþ1
lþ1

!
p

2
; 0
"

3

77775
:

(A.8)

Now, from Eq. (5.22),

Yl
lþ1

$p
2
; 0
%
;

!
2l þ 2
2l þ 3

"12

Ylþ1
lþ1

$p
2
; 0
%
¼ $Yl

l

$p
2
; 0
%
; (A.9)

and Eq. (A.4) gives

s:n
$p
2
; 0
%
¼

(
0 1
1 0

)
: (A.10)

Finally, it is sufficient to introduce Eqs. (A.8), (A.9), and (A.10) into
Eq. (A.7) to find

A ¼ 0; B ¼ 1; (A.11)

which proves the first relation [Eq. (5.23)]. The second relation is evident
because

ðs:nÞ2 ¼ I : (A.12)

Thus, we have

Ym*
l ðq;fÞ ¼ ð$1ÞmY$m

l : (A.13)

APPENDIX B

To prove Eq. (5.29), remember that in Eq. (A.3), L and s commute, so
from Eqs. (5.21) and (A.1), we have
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J2Um
l ð ) Þ ¼ jð jþ 1ÞUm

l ð ) Þ; L2Um
l ð ) Þ ¼ lðlþ 1ÞUm

l ð ) Þ

S2Um
l ð ) Þ ¼ sðsþ 1ÞUm

l ð ) Þ ¼ 3
4
Um
l ð ) Þ:

(B.1)

Thus, applying Eq. (A.3), we get

ðLþ SÞ2Um
l ð ) Þ ¼

&
L2þ S2 þ 2L:S

'
Um
l ð ) Þ

¼
&
L2þ S2 þ L:S

'
Um
l ð ) Þ (B.2)

so that Eq. (B.1) gives jð jþ 1ÞUm
l ð)Þ ¼

h
lðlþ 1Þ þ 3

4 þ L:s
i
Um
l ð)Þ and

Eq. (5.29).

CHAPTER 6

A New Electromagnetism with Four
Fundamental Photons: Electric, Magnetic,
with Spin 1 and Spin 0

6.1 THEORY OF LIGHT
6.1.1 Theory of Light and Wave Mechanics: A Historical

Summary
This chapter presents an introduction to a new theory of light and

gravitation (the last at a linear approximation) that generalizes, owing to
the idea of the magnetic monopole, the de Broglie theory of light and grav-
itation based on his theory of spin particles. The idea of leptonic mono-
poledand its consequencesdare the new concepts added to de Broglie’s
theory. On the contrary, other ideas that appear in the new theory, includ-
ing the “magnetic photon,”were implicitly present (in a hidden form) in the
de Broglie theory of spin particles; but curiously, they remain unexploited
(or even noticed) until recent years. This is the reason for the following short
historical summary.

The de Broglie theory of spin particles started from his work on the theory
of light that began as a dynamic theory of the Einstein photon. At that time
(1922), thewavemechanics did not yet exist: it appeared a little later, precisely
from this dynamic theory of Einstein’s “light quanta” (de Broglie, 1922).
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De Broglie initially tried a test of the photon hypothesis, going as far as
possible with the radiation theory, in a purely corpuscular way, in the spirit
of Newton, but introducing relativistic mechanics, kinetic theory, and ther-
modynamics; nevertheless, they did not use electromagnetism because de
Broglie aimed to find where and in what form the waves become necessary.

He considered Einstein’s “light quanta,” which were not yet called pho-
tons, to be true particles (as he put it, “atoms of light”) with a small proper
mass, obeying the laws of relativistic mechanics. Starting from a purely cor-
puscular point of view, he got several results previously considered as the
consequences of electromagnetism:
• For instance, if E ¼ mc2 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ v2=c2

p
¼ total energy, the relativistic

form of the momentum B is B ¼ mc ¼ E=c, from which de Broglie
obtained the correct relation p ¼ r=3 between the pressure and energy
density of black radiation (de Broglie, 1922), first proved by Boltzmann
and later ascribed to Maxwell’s theory.11

• Applying relativity, de Broglie gave the correct mean energy 3 kT for the
photon instead of the half-value ð3=2ÞkT of the classical theory of gas.
This energy was usually considered as the sum of electric and magnetic
energies, whereas it is a simple consequence of relativistic kinematics.

• Finally, de Broglie obtained the formula of the Doppler effect from the
relativistic addition of velocities and Planck’s law of quanta.
After these results, de Broglie realized that his ideas were not restricted to

light and photons, but rather could be said about every particle. Therefore,
he attached a frequency to each material particle via the expression
mc2 ¼ hn. This brought him, if not yet to the wave, at least to a frequency
that he ascribed to an “internal clock” of the particle, which was not far from
Newton’s conceptions. But he rapidly understood that such an interpreta-
tion is not relativistically invariant because if n is an internal frequency of
a particle, it is submitted to the slowing of the clocks, while m will increase
with the velocity. The de Broglie “illuminating idea” (in his own words) was
that, on the contrary, the frequency of a wave would have the same variance
as m so that the expression mc2 ¼ hn becomes relativistically invariant and
defines univocally n from m. This was the start of wave mechanics.

11 It is curious tonote thatPlanck found twice this result, due to theomissionof relativity (which is absolutely
astonishing coming from Max Planck). So, he wrote E ¼ ð1=2Þmv20B ¼ mv ¼ 2W=v0
p ¼ 2r=3, with an erroneous factor of 2, considered by the opponents to Einstein as an argument
against the photon hypothesis (de Broglie, 1922) .
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It must be stressed that de Broglie considered from the very beginning
that the photon had a mass: namely, a mass far smaller than the one of an
electron, but it was a “true” mass that includes the photon in a description
of all the particles of the universe. Nevertheless, such a theory of light
could not be developed with the Schr€odinger or Klein-Gordon equation
because the first is nonrelativistic and the waves of both equations are
not polarized.

The situation became different with the appearance of the Dirac equa-
tion for which de Broglie was immediately enthusiastic because he saw in
it a possible beginning for a theory of light (de Broglie, 1932aec): the
equation was relativistic, with a four-component wave function (and,
therefore, a polarization) and a spin: the axial vector that he had pre-
dicted for light12; and a second-rank tensor, Mmn ¼ jgmgnj, which is anti-
symmetric as the electromagnetic tensor, despite the fact that it was not
a wave.

Nevertheless, the elements of the Dirac equation could not be directly
applied to a photon: the wave does not have the variance either of a vector
or of an antisymmetric tensor [such a tensor ðjgmgnjÞ is present in the
theory, but it is not the wave]; the spin rotates twice as slow and the particle
is a fermion, not a boson, as was already well known. Nevertheless, the way
was not obstructed as it had been because the different elements did exist,
but in a distorted form.

After some initial attempts (de Broglie, 1932a, b), de Broglie realized that
a photon cannot be an elementary particle, but the fusion of a pair: perhaps
of a spin-1/2 corpuscle and its “anticorpuscle” (this word appearing here for
the first time), both obeying a Dirac equation (de Broglie, 1932b).

The creation and annihilation of pairs suggested that a photon could
result from the “fusion” of an electron-positron pair linked by an electro-
static force. The smallness of the photon mass could be a consequence of
a defect in relativistic mass. But the introduction of an electrostatic force is
a source of confusion because a theory of photons is a theory of electromag-
netism, so the electrostatic force must be a consequence of the theory, not an a
priori hypothesis.

12 De Broglie (1922) wrote: “A more complete theory of quanta of light must introduce a polarization
in such a way that: to each atom of light would be linked an internal state of right or left polarization
represented by an axial vector with the same direction as the propagation velocity.” It was shown
later that when the velocity of a particle tends to the velocity of light, the space components of the
vector spin lies along the velocity.
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So, recognizing that the choice of conjugated particles was impossible, de
Broglie supposed that the photon is a neutrino-antineutrino pair or, more
generally, the center of mass of a couple of Dirac particles. He published
the equation in 1932 (de Broglie 1932b, c) and he developed the theory
during many years.

6.1.2 De Broglie’s Method of Fusion
First, let us take as an example a pair of identical, ordinary particles of mass
m, obeying the Schr€odinger equation, with respective coordinates
ðx1; y1; z1Þ and ðx2; y2; z2Þ. Their center of mass is

x ¼ x1 þ x2
2

; y ¼ y1 þ y2
2

; z ¼ z1 þ z2
2

: (6.1)

The Schr€odinger equation of the center of mass is definite, using the
coordinates in Eq. (6.1):

$iZ
vf

vt
¼ 1

2M
Df ðM ¼ 2mÞ: (6.2)

But such a procedure cannot be extended to a pair of Dirac particles
because there is no quantum (or even a classical) relativistic theory of systems
of particles. Therefore, de Broglie suggested a formal way that is easier to
generalize. He associated the particles with two different waves, j and 4,
without making any distinction between their coordinates. So we have
the following equations with the same coordinates xk:

$iZ
vj

vt
¼ 1

2m
Dj; $iZ

v4

vt
¼ 1

2m
D4 (6.3)

Now, the fusion conditions, expressing the equality of moment and
energy in the case of plane waves, are

vj

vt
4 ¼ j

v4

vt
¼ 1

2
vðj4Þ
vt

;
v2j

vx2k
4 ¼ vj

vxk

v4

vxk
¼ j

v24

vx2k
¼ 1

4
v2ðj4Þ
vx2k

:

(6.4)

Multiplying the first equation in Eq. (6.3) by 4 and the second by j, we
find for f ¼ ð4jÞ Eq. (6.2) again. Then de Broglie applied the same con-
ditions to all the waves without restriction to the plane waves, and he applied
it to the relativistic case: it is called the fusion postulate.
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6.1.3 De Broglie’s Equations of Photons
Consider the Dirac equations of two particles of mass m0

2 :

1
c
vj

vt
¼ ak

vj

vxk
þ i

m0c
2Z

a4j

1
c
v4

vt
¼ ak

v4

vxk
þ i

m0c
2Z

a44 ;

(6.5)

where {ak, a4} are the Dirac matrices13:

ak ¼
!

0 sk
sk 0

"
; ak ¼

!
I 0
0 $I

"
; ðsk ¼ Pauli matricesÞ: (6.6)

In analogy with Eq. (6.4), de Broglie put the fusion conditions on the Dirac
wave-components as follows:

vjn

vt
4m ¼ jn

v4m

vt
¼ 1

2
vðjn4mÞ

vt
;

vjn

vxk
4m ¼ jn

v4m

vxk
¼ 1

2
vðjn4mÞ

vxk
:

(6.7)

So he found forf ¼ ffnm ¼ jn4mg a new equation, which he extended
by postulate to all the f functions even if their form is not fnm ¼ jn4m:

1
c
vf

vt
¼ ak

vf

vxk
þ i

m0c
Z

a4f

1
c
vf

vt
¼ bk

vf

vxk
þ i

m0c
Z

b4f:
(6.8)

The matrices a and b are defined as

ar ¼ ar " I ; ðarÞik;lm ¼ ðarÞildkm
br ¼ I " ar ; ðbrÞik;lm ¼ ð$1Þrþ1ðarÞkmdil ðr ¼ 1; 2; 3; 4Þ: (6.9)

They separately verify the relations of the Dirac matrices, where a and b
commute:

aras þ asar ¼ 2drs; brbs þ bsbr ¼ 2drs; arbs $ bsar ¼ 0: (6.10)

With this finding, it is easy to prove that the components of f obey the
Klein-Gordon equation.

Eq. (6.8) with the definitions (6.9) are the de Broglie photon equations and
we shall see that they include the Maxwell equations.

13 For the beginning of the theory, we keep the old notations that de Broglie used.

Theory of the Leptonic Monopole 87



First, however, we must examine some other representations of the pho-
ton equations:

The Quasi-Maxwellian Form
First, it must be noted that there are too many equations in Eq. (6.8): 32
equations for only 16 components of the wave f. There is a problem of
compatibility. To solve the problem, de Broglie added and subtracted the
two systems in Eq. (6.8):

ðAÞ 1
c
vf

vt
¼ ak þ bk

2
vf

vxk
þ i

m0c
Z

a4 þ b4
2

; ðBÞ 0 ¼ ak $ bk
2

vf

vxk
þ i

m0c
Z

a4 $ b4
2

f:

(6.11)

Furthermore, it will be shown that Eq. (6.8) exactly contains the Max-
well equations (up to mass terms), but Eq. (6.11) is already an outline of these
equations because this system is divided into a group (A) of “evolution equa-
tions” that resembles the Maxwell equations in vE=vt and vH=vt, and a
group (B) of “condition equations,” of the same kind as divE ¼ 0 and
divH ¼ 0. In de Broglie (1934b), it gave only the group (A), but it is easy
to prove, in analogy with the Maxwell equations, the following:
• Owing to Eq. (6.10), (B) is a consequence of (A).
• Actually, (B) is only satisfied by the solutions of (A) whose Fourier

expansion does not contain a zero frequency. But the zero frequencies
are automatically absent from the solutions of (A) if m0s0.

• Therefore, iff m0s0, the condition (B) is a consequence of the evolution
equations (A).

Canonical Form
Eq. (6.8) can be transformed in another way:

ðCÞ 1
c
a4 þ b4

2
vf

vt
¼ b4ak þ a4bk

2
vf

vxk
þ i

m0c
Z

a4b4f

ðDÞ 1
c
a4 $ b4

2
vf

vt
¼ b4ak $ a4bk

2
vf

vxk
:

(6.12)

This new system is at the basis of the Lagrangian derivation of the theory
and of its tensorial form, and it was used by de Broglie to quantize the pho-
ton field and to describe the photon-electron interaction (de Broglie, 1940e
1942). Just as in Eq. (6.11), (D) is a consequence of (C) if m0s0, which is
proved by applying to (C) the operator: 1c

a4$b4
2

v
vt, taking into account Eq.

(6.10). It is noteworthy that the strongest arguments in favor of a massive
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photon are not the answers to particular experimental objections, but the
arguments imposed by the fusion theory, which are linked to the very struc-
ture of the theory.

6.1.4 Introduction of a Square-Matrix Wave Function
Now, let us return to the initial system [Eq. (6.8)], but in terms of relativistic
coordinates xk ¼ ðx; y; zÞ; x4 ¼ ict with g matrices (m; n ¼ 1; 2; 3; 4):

gmgn þ gngm ¼ 2dmn; m; n ¼ 1; 2; 3; 4; gk ¼ ia4ak;

g4 ¼ a4; g5 ¼ g1g2g3g4:
(6.13)

Multiplying Eq. (6.8) by ia4, we find that owing to Eq. (6.9), the follow-
ing new system, which is not written in terms of a 16-line column wave
function f but in terms of a 4 "4 square matrix wave function j:

vmgmJ$ m0c
Z

J ¼ 0

vmJ~gm $
m0c
Z

J ¼ 0

&
m; n ¼ 1; 2; 3; 4; ~gm ¼ gm transp:

'
: (6.14)

The transposed matrices ~g are easily eliminated because, if two sets of
Dirac matrices gm and ~gm, verify the relations [Eq. (6.13)], there are two
(and only two) nonsingular matrices, L and G, such that

~gm ¼ LgmL
$1; ~gm ¼ $GgmG

$1; L ¼ Gg5; m ¼ 1; 2; 3; 4: (6.15)

g5 is given in Eq. (6.13), and Eq. (6.15) is true for ~gm transposed from gm; A
solution is as follows:

G ¼ $ig2g4; L ¼ Gg5 ¼ $ig3g1: (6.16)

The L case in Eq. (6.15) was given in Pauli (1936), and the G case was
given by de Broglie to eliminate ~gm in Eq. (6.16). Indeed, introducingG into
Eq. (6.14), we find the system given by Tonnelat, de Broglie, and Pétiau
(Tonnelat, 1938; de Broglie, 1940e1942):

vmgmðjGÞ $
m0c
Z

ðjGÞ ¼ 0

vmðjGÞgm þ
m0c
Z

ðjGÞ ¼ 0:
(6.17)

The equations obtained by substituting L to G [Eq. (6.15)] were given
recently (Lochak, 2014):
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vmgmðjLÞ $ m0c
Z

ðjLÞ ¼ 0

vmðjLÞgm $
m0c
Z

ðjLÞ ¼ 0:
(6.18)

The apparently small formal difference (a minus sign) between the two
systems [Eqs. (6.17) and (6.18)] entails a great physical difference because
the solutions of these equations exchange between themselves by a mutipli-
cation by g5: they are dual in space-time, and we shall prove that it signifies
the exchange between electric and magnetic charges.

So, the substitution of L to G in the representation by square matrices of
the initial de Broglie’s equations [Eq. (6.5)] gives two kinds of photons:
• Electric and magnetic photons
• The electromagnetic formulas of the photon equations

The fundamental electromagnetic formulas were given by de Broglie in
his first papers, starting from Eq. (6.8) (de Broglie 1934a, b, 1936). For the
sake of simplicity, we start from Eqs. (6.17) and (6.18), applying a procedure
suggested by M.A. Tonnelat and then used by de Broglie (1934b).

Let us expand a 4 "4 matrix Q on the Clifford algebra in Rþ$$$:

LJ ¼ Q ¼ I40 þ gm4m þ g½mn(4½mn( þ gmg54m5 þ g545 ; (6.19)

where 40 is a scalar, 4m a polar vector, 4½mn( an antisymmetric tensor of
rank 2, 4m5 an axial vector (the dual of an antisymmetric tensor of rank 3)
and 45 a pseudoscalar (the dual of an antisymmetric tensor of rank 4).
These expressions correspond in R3 to a scalar I1; the Lorentz potentials A,
V (linked to the electric charges); the electromagnetic fields H, E;
the pseudo potentials B, W (linked to magnetic charges); and a pseudo-
scalar I2

14:

H ¼ Kk0
$
4½23(;4½31(;4½12(

%
; E ¼ Kk0

$
i4½14(; i4½24(; i4½34(

%

A ¼ Kð41; 42; 43Þ; iV ¼ K44

$ iB ¼ K
$
4½15(; 4½25(; 4½35(

%
; W ¼ K4½45(

I1 ¼ K40; iI2 ¼ K45

!
k0 ¼

m0c
Z
; K ¼ Z

2
ffiffiffiffiffi
m0

p
"
:

(6.20)

14 Remember that B is not an induction. The Lorentz polar quadripotential (V, A) remains linked to
the electric Einstein photon, while the pseudoquadripotential (W,B) is linked to the magnetic
photon.
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Now, if we develop Eqs. (6.17) and (6.18) owing to Eqs. (6.19) and
(6.20), we find two sets of equations, discussed in the next sections.

6.1.4 The Equations of the “Electric Photon” (G Matrix).
The expansion of the matrix wave-function J ¼ j G according to
Eq. (6.19) splits Eq. (6.17) into two systems (de Broglie 1940e1942,
1943), that we now refer to as the electric photon because the vector potential
A appears in (6.21):

ðMÞ

0

BBBBB@

$1
c
vH
vt

¼ curlE;
1
c
vE
vt

¼ curl Hþ k20A

divH ¼ 0; divE ¼ $k20V

H ¼ curl A; E ¼ $gradV $ 1
c
vA
vt

;
1
c
vV
vt

þ divA ¼ 0

1

CCCCCA
(6.21)

ðNMÞ

0

BB@
$1
c
vI2
vt

¼ k0W ; grad I2 ¼ k0B;
1
c
vW
vt

þ div B ¼ k0I2

curl B ¼ 0; gradW þ 1
c
vB
vt

¼ 0; fðk0I1 ¼ 0; k0s0Þ0I1 ¼ 0g

1

CCA:

(6.22)

Actually, de Broglie fixed his attention essentially on the first system of
equations [Eq. (6.21)], which he denoted as (M) (“Maxwellian”), for
obvious reasons, and he considered it as the equations of the photon (M:
spin 1). This was the great victory of his theory: the deduction of Maxwell’s
equations from Dirac’s equation.

Curiously, de Broglie was rather puzzled by the second system spin 0,
that he named negatively: NM (“non-Maxwellian”), without giving any
clear interpretation. He thought at first of a meson but then abandoned
the idea. Here, we shall adopt the following very simple interpretation.

It is natural to find two systems of equations because the fundamental
equations [Eq. (6.8)] are not the equations of a particle of spin 1, but of a
particle of maximum spin 1: a combination of two particles of spin ½, as
de Broglie underlined it. For this reason, just as for a diatomic molecule,
we find two states described by two systems of equations: an orthostate of
spin 1 ¼ ½ þ ½ (parallel spins) and a parastate of spin 0 ¼ ½ $ ½ (opposite
spins). We shall adopt this interpretation.

Both states have equal rights with respect to the symmetry laws because
both are linked by a symmetry of form and both have a physical sense,
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despite the fact that one of them (the orthostate: spin 1) is related to a far
more celebrated case: the Maxwell equations, while the orthostate is related
to the smaller Aharonov-Bohm effect, as will be shown later in this chapter.

Thus, we have two photonsdmore precisely, two spin states: 1 and 0, of
a photon described by the systems [Eqs. (6.21) and (6.22)]. And it is not a
general photon, but only an electric photon; this is because we shall find
another one: a magnetic photon. For the moment, we have just the electric
photon with two photon states: a spin 1 state (M), “Maxwellian,” and a
spin 0 state (NM), “non-Maxwellian.”

The (M) equations are Maxwell’s equations, but with two differences:
1. The first difference is the presence of the mass terms, which introduces a

link between fields and potentials, the latter becoming physical quantities
and losing their gauge invariance.

2. The second difference is the automatic definition of fields, through the
Lorentz potentials, with the following Lorentz gauge condition:

H ¼ curl A; E ¼ $gradV $ 1
c
vA
vt

;
1
c
vV
vt

þ divA ¼ 0: (6.23)

These relations are not arbitrarily added to the field equations, as they
were in the classical theory: they appear automatically and they are them-
selves field equations, as a consequence of the massive photon. Of course,
they were already present in a hidden form in Eqs. (6.8), (6.11), (6.12),
and (6.17).

A consequence of Eq. (6.21). is that the fields and potentials do not obey
the d’Alembert wave equation, but rather the Klein-Gordon equation:

,F þ k20F ¼ 0; ðF ¼ E; H; A; V ; B; W ; I1; I2Þ: (6.24)

The electrostatic solution is not the Coulomb potential 1
r , but the

Yukawa potential V ¼ e$r=k0=r, which remains a long-range potential
because of the smallness of the Compton wave number k0 ¼ m0c=Z.

The (NM) equations were previously considered by de Broglie (as was
already said) as describing an independent spin 0 meson with a far greater
m0 mass than the mass of the photon. This fact is astonishing, considering
that the equations (M) and (NM) came from the decomposition of the
same system of equations, so that both rest masses are obliged to be equal.
Of course, we shall abandon this idea, which was actually later abandoned
by de Broglie himself. Our interpretation will be based, on the contrary,
on the link between the two systems (M) and (NM), admitted as a fact.
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The system (NM) describes a chiral particle because I1 is a true invariant,
but I1 ¼ 0; actually, the particle is definite by the second invariant I2 which
is a pseudoinvariant, dual of an antisymmetric tensor in Rþ$$$ (with
I2s0), and by the pseudo-quadrivector (B,W) in Rþ$$$.

It must be noted that de Broglie remarked (de Broglie, 1940e1942) that
the situation could be interpreted in another way, defining a second electro-
magnetic field (which he called an “anti-field”) which equals zero by virtue of
Eq. (6.22), as follows:

H0 ¼ 1
c
vB
vt

þ gradW ; E0 ¼ curl B: (6.25)

We shall follow the second interpretation here, on the basis of a symme-
try between electricity and magnetism developed in our papers concerning
the photon (Lochak 20) and the magnetic monopole (Lochak, 1992,
2000)15. We consider the systems [Eqs. (6.21)e(6.22)] as simply describing,
with equal weight the orthohydrogene state (spin 1) and the parastate (spin
0) of an electric photon, for the following reasons:
1. In the system (M), we have an electromagnetic field ðE;HÞ and a polar

4-potential ðV ;AÞ, related to ðE;HÞ by the Lorentz formulas [Eq.
(6.23)]. These fields and potentials enter into the dynamics of an electric
charge. Because k0s0, we have in general divEs0, so that the electric
field E is not transversal, contrary to the magnetic field H: and E has a
small longitudinal component, of the order of k0.

2. In the (NM) equations, we have a pseudo-invariant I2 and an axial
4-potential ðB;W Þ, to which may be added the invariant I1 and the
anti-field fE0;H0g, defined in Eq. (6.25), and which will be related to
magnetism. But here, I1 ¼ E0 ¼ H0 ¼ 0, which confirms the electric
character of the (NM) photon by the annihilation of magnetic quantities.
The difference between the de Broglie interpretation and mine is that

now (NM) is no longer separated from the spin 1 (state M): it is the spin
0 state of the same photon. The electric photon is the whole system [Eqs.
(6.21)e(6.22)] with two values of spin.

6.1.5 The Equations of the Magnetic Photon (L Matrix).
This second photon is given by Eq. (6.18) with L ¼ Gg5 [Eq. (6.15)]
instead of G in [Eq. (6.17)]. The primed new field components are the

15 The de Broglie definition [Eq. (6.25)] ofH0 and E0, in terms of a pseudo-quadripotential (B,W ), was
later rediscovered by Cabibbo and Ferrari (1962).
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dual of the preceding ones, which means that the matrix g5 exchanges elec-
tricity and magnetism (Lochak, 1992, 2000):

ðMÞ

0

BBBBB@

$1
c
vH0

vt
¼ curl E0 þ k20B

0;
1
c
vE0
vt

¼ curl H0

divH0 ¼ k20W
0; divE0 ¼ 0

H0 ¼ gradW 0 þ 1
c
vB0
vt

; E0 ¼ curl B0;
1
c
vW 0

vt
þ divB0 ¼ 0

1

CCCCCA

(6.26)

ðNMÞ

0

BB@
$1
c
vI1
vt

¼ k0V 0; gradI1 ¼ k0A0;
1
c
vV 0

vt
þ divA0 ¼ k0I1

curlA0 ¼ 0; gradV 0 þ 1
c
vA0

vt
¼ 0; fðk0I2 ¼ 0; k0s0Þ0I2 ¼ 0g

1

CCA

(6.27)

The new photon is associated, as before, with a couple of fields. But the
situation is inverted in the following ways:
1. The anti-field ðE0;H0Þ and the axial 4-potential ðW 0;B0Þ satisfy the

Maxwell-type (M) system [Eq. (6.26)]. The definition [Eq. (6.25)] of
the anti-fields now appears in Eq. (6.26) automatically (and not by an
a priori definition), as one of the field equations. Now ðE0;H0Þ are
not equal to zero. The fields ðE0;H0Þ are exactly those that enter into
the dynamics of a magnetic charge: a monopole (Lochak 1985, 1995b
and Chapters 2, 3 of this book).
Besides, symmetrically to the electric case, we now have divH0s0, so

that, in a plane wave, the magnetic field H0 (instead of the electric one E0)
has a small longitudinal component of the order of k0, while E0 is transversal.
We have a magnetic photon.
2. Now, the polar potentials ðV 0;A0Þ dual from ðW 0; S0Þ appear in the

(NM) system (i.e., in the spin 0 state). The invariant I 01 and the pseudoin-
variant I 02 invert their roles: we have now I 01s0 and I 02 ¼ 0. The elec-
tromagnetic field ðE0;H0Þ defined by the Lorentz formulas [Eq. (6.23)]
gives ðE0s0; H0s0Þ in the Maxwellian formulas (M) and
ðE0 ¼ H0 ¼ 0Þ in the non-Maxwellian formulas (NM), as opposed to
what we had in the electric case.
It is a remarkable fact that de Broglie’s fusion of two Dirac equations not

only gives the classical Maxwell equations (as was proved by de Broglie), but
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also defines two classes of photons, corresponding respectively to electric or
magnetic charges. The algebraic symmetry excludes any other possibility.

The symmetry between the two electromagnetic fields is all the more
interesting in that such a symmetry already appears in the Dirac equation
itself, in the form of two minimal interactions corresponding to electric and
magnetic charges, associated with the two kinds of fields (Chapter 2 of
this book and Lochak, 1995b). Symmetries of Dirac’s and de Broglie’s equa-
tions are thus mutually reinforced. Nowwe must address other issues, to wit:
• We have two kinds of photons: the electric and the magnetic photon.

But is their physical difference given by the difference between the two
pairs of equations: Eqs. (2.10)e(2.11) and Eqs. (6.17)e(6.18) or the Dirac
gauge and equation and the chiral gauge and equation? Yes, because it is
the difference between the motion of an electron or a monopole in an elec-
trodynamic field. For instance, in a linear electric field, the electron is line-
arly accelerated, while the monopole rotates around the field, and the
reverse is true for a linear magnetic field.
• Actually, there are not only two but four kinds of photons because they

can have a spin 1 or a spin 0.
The preceding answer is only related to spin 1. We must now answer a

new question: are the spin 0 photons already known? The answer is yes and
there is a wellknown example.

6.1.6 The AharonoveBohm Effect
Consider the equations of (NM) potentials: Eqs. (6.22) and (6.27):

Spin 0 electric photon: $1
c
vI2
vt ¼ k0W ; grad I2¼ k0B; 1

c
vW
vt þdivB¼ k0I2

and the associated equations in Eq. (6.22).
Spin 0 magnetic photon: $1

c
vI1
vt ¼ k0V 0; grad I1¼ k0A0; 1

c
vV 0

vt þdivA0¼
k0I1 and the associated equations in Eq. (6.27).

We must remember that the spin 1 electric photon is associated with a
magnetic spin 0 photon by the pseudo e invariant I2, while the spin 1 mag-
netic photon is associated with an electric spin 0 photon by the true invariant
I1. The preceding relations immediately imply that the spin 0 potentials are
the gradients of relativistic invariants, which verifiy the Klein-Gordon
equation:

vmI1 ¼ k0Am; ,I1 þ k20I1 ¼ 0; vmI2 ¼ k0Bm; ,I2 þ k20I2 ¼ 0:
(6.28)
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We know that by virtue of Eqs. (6.22) and (6.27), or Eq. (6.28), the corre-
sponding electromagnetic fields equal zero. The question is: how can the spin 0
photon be detected?More precisely, since these fieldless potentials are unable to
generate a force, what could be observed? The answer is, of course, the phase,
first characteristic of a wave. The Aharonov-Bohm effect was imagined at first
by David Bohm16 to answer this question, and to prove that contrary to a com-
mon idea, the electromagnetic potentials are not only mathematical intermedi-
ates (even if they can play this role): they are observable physical quantities. The
effect had been predicted ten years earlier by Ehrenberg and Siday (1949).

6.1.7 The Effect
The idea suggested by Bohm (Aharonov and Bohm, 1959; Tonomura,
1998; Peshkin and Tonomura, 1989; Olariu and Popescu, 1985; Lochak,
1983) was to modify electron interference by a fieldless magnetic potential
created by a magnetic string or by a thin solenoid orthogonal to the plan of
interfering electron trajectories, as shown in Figure 6.1. The Young slits are
obtained by means of a FresneleM€ollenstedt biprism.

The solenoid must be infinitely long (in principle), so the magnetic field
emanating from the extremities cannot disrupt the experiment: it is assumed
in the calculations, but actually a few millimeters are sufficient because the
transverse dimensions of the device are of the order of microns. This
arrangement of the solenoid has led to the idea that the magnetic flux
through the trajectories’ quadrilateral plays an essential role. Many disagree
with that idea (Lochak, 1983).

The problem of eliminating this hypothesis was elegantly solved by Tono-
mura (see: Peshkin and Tonomura, 1989) by substituting the rectilinear string
by a microscopic torus (10 mm): one of the electron beams passes through the
torus and the other outside, the magnetic lines being trapped in the torus.

Fresnel - Möllenstedt  biprism 

F

solenoid

h k = p = mv + eA

S
1

2

screen

fringes

+
+ ++
++ +

h k = p = mv - eA 

Figure 6.1 Aharonov-Bohm experiment.

16 I know that because I was acquainted with Bohm who lived in Paris in that time.
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Let us give an intuitive interpretation of the experiment.The principle is that
the wave vector of an electron in amagnetic potential is given by the de Broglie
wave (de Broglie, 1934c), which is a direct consequence of the identification of
the principles of Fermat and of least action (p is the Lagrange momentum):

h
l
n ¼ hk ¼ p ¼ mvþ eA: (6.29)

It is obvious from Eq. (6.29) that interference and diffraction phenomena
are influenced by the presence of a magnetic potential independent of the pres-
ence of the field because the interferences depend only on the phase. It is well
known in optics: an interference figure is shifted in a Michelson interferometer
by introducing a plate of glass in one of the virtual beams, which causes a phase
shift and thus a change of the optical path without any additive force.

These phenomena are manifestly gauge dependent: if we add something
to A, whether a gradient or not, in the de Broglie wave l [Eq. (6.29)], the
last is modified. This is evident even in the classical de Broglie formula: l ¼
h=mv when A ¼ 0, which is gauge dependent too, a fact often emphasized
by de Broglie himself, who said, “If gauge invariance were general in quan-
tum mechanics, the electron interferences could not exist.”

In the case of the Aharonov-Bohm experiment, there is an additive phase
with both interfering waves in opposite directions, which doubles the shift
of the interference fringes. Let us recall a proof of the effect, independent
from the fact that a potential generates forces or not (Lochak, 1983).

6.1.8 The Magnetic Potential of an Infinitely Thin and
Infinitely Long Solenoid

Weconsider the case corresponding to theAharonov-Bohmexperiment: elec-
trons diffracted onYoung slits and falling on amagnetic solenoid orthogonal to
the plane electron trajectories, according to the Figure 6.1 and, further, to the
schematic shown in Figure 6.2, the solenoid is along Oz. To simplify the

x

a/2

-a/2

-b

y’ y
z

C

A+

A-

O

Figure 6.2 Aharonov-Bohm scheme.
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calculations, we shall disregard the photon mass, which is only important in
the symmetry laws, which are taken into account in all the formulas; there-
fore, to omit the photon mass only means to omit negligible corrections.

The electric charge of the diffracted electrons implies that they “see” the
electromagnetism through the Lorentz potentials ðV ;AÞ, and thus through
the equations (M): Eq. (6.21). These equations derive from the pseudo-invar-
iant I2. Now, there is an obvious invariant in the Aharonov-Bohm effect: the
rotation angle 4 ¼ arctan y=x around the axis Oz. So we shall write

I2 ¼ εk0 arctan ðy=xÞ; (6.30)
where k0 is the quantum wave number of the photon and ε a convenient
dimensional constant, the value of which is not important for our calcu-
lation. Neverthless, something seems wrong here, because ðy=xÞ is
P-invariant so that, with the definition [Eq. (6.30)], I2 seems to be a
P-invariant and not a pseudoinvariant, as it needs to be in Eq. (6.22).

But this is not so because ðy=xÞ is P-invariant only in the spaceR2: ðx; yÞ,
not in the space R3 ðx; y; zÞ. In our case, the inversion is the P-transforma-
tion ðx; y; zÞ/ð$x;$y;$zÞ, which implies the inversion ofOz and thus of
the angle 4. So that ðy=xÞ is really a pseudoinvariant in R3.

Thus, we have, by virtue of Eq. (6.22):

gradI2 ¼ k0B (6.31)

Bx ¼ $ε
y

x2 þ y2
; By ¼ ε

x
x2 þ y2

; Bz ¼ 0: (6.32)

6.1.9 The Theory of the Effect
The commonly admitted theories are unnecessarily complicated (Olariu and
Popescu, 1985). For the physical bases of the effect, the best is to start from
the brillant book of Tonomura (1998). To find the formula of fringes, it is
sufficient to take the geometrical optics approximation with the phase 4 ¼
S=Z of de Broglie’s wave and the principal Hamilton function S obeying the
Hamilton-Jacobi equation with the potential [Eq. (6.32)]:

2m
vS
vt

¼
!
vS
vx

þ ε
y

x2 þ y2

"2

þ
!
vS
vy

$ ε
x

x2 þ y2

"2

: (6.33)

The electronic wave propagates from x ¼ $N to x ¼ þN and the
Young slits Aþ and A$ (Figure 6.2) are on a parallel to Oy, at a distance
)a=2 from the point C located at x ¼ $b.
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The pseudopotential B appearing in (6.30) and (6.31) is the gradient of
I2, so that B and I2 satisfy up to m0 the equations (NM), Eq. (6.27). They are
independent of t because W ¼ 0.

Eq. (6.33) is immediately integrated, defining the phase as follows:

S ¼ S $ ε arctan y=x ; (6.34)

which gives

2m
vS

vt
¼

!
vS

vx

"2

þ
!
vS

vy

"2

: (6.35)

Chosing a complete integral of Eq. (6.35) and thus of Eq. (6.32), owing
to Eq. (6.33), we have

S ¼ Et $
ffiffiffiffiffiffiffiffiffi
2mE

p
ðx cos qo þ y sin qoÞ (6.36)

S ¼ Et $
ffiffiffiffiffiffiffiffiffi
2mE

p
ðx cos qo þ y sin qoÞ þ ε arctan

y
x
; (6.37)

or, in polar coordinates x ¼ r cos q; y ¼ r sin q:

S ¼ Et $
ffiffiffiffiffiffiffiffiffi
2mE

p
r cosðq$ qoÞ þ ε q: (6.38)

The Jacobi theorem gives the trajectories (the wave rays):

vS
vqo

¼
ffiffiffiffiffiffiffiffiffi
2mE

p
ðx sin qo $ y cos qoÞ ¼ m;

vS
vE

¼ t $
ffiffiffiffiffiffi
m
2E

r
ðx cos qo þ y sin qoÞ ¼ to:

(6.39)

Finally, with17 E ¼ 1
2mv

2 we have the motion

x cos qo þ y sin qo ¼ vðt $ toÞ: (6.40)

We see that the rays (electron trajectories), defined in Eq. (6.39) are
orthogonal to the moving planes but they are not orthogonal to the equal
phase surfaces [Eqs. (6.37)e(6.38)] except far from the magnetic string
ðx/NÞ, when the potential term of the order of ε becomes negligible.

Therefore, despite the presence of a potential, the electronic trajectories
remain rectilinear and are not deviated, because the magnetic field equals
zero by virtue of Eq. (6.22). The velocity v ¼ Const remains the one of
the incident electrons because of the conservation of energy.

17 We are obviously far from relativity.
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But the diffraction of waves through the slits Aþ and A$ creates, for the
electron trajectories, an interval of possible angles qo equal to the angles of
the interference fringes, modified by the magnetic potential:

There is no deviation of the electrons, only a deviation of the angles of
phase synchronization between the waves issued from Aþ and A$. This is
the Aharonov-Bohm effect, which is in accordance with the definition of
the spin 0 photon [Eq. (6.22)].

It would be useless to reproduce the end of the theory of Aharonov-
Bohm effect (see, for instance, Lochak, 1932b). Let us only recall the total
phase-shift:

D4 ¼ DS
h

¼ aqo
l

þ 2εx
h

: (6.41)

The first term gives the standard Young fringes (the notations are those
of Figure 6.2), while the second term is the Aharonov-Bohm effect:
x ¼ arctan a=2b, which is equal to half the angle under which the Young
slits are seen from the solenoid, which entails a dependence of the effect
on the position of the string. One can assert that the effect decreases
when the distance b increases.

We see that the theory of the Aharonov-Bohm effect is a simple conse-
quence of the definition of the invariant in the system [Eq. (6.27)], as the
invariant rotation angle around the axis of he solenoid.

6.1.10 Conclusions on the Theory of Light
We suggest a new theory of light based on four photons, as follows:
1. At first, the Einstein photon known in optics from 1905, and later iden-

tified by de Broglie (1922) as a vectorial spin 1 particle, which we call
here the electric photon, because it interacts with the electric charges, prin-
cipally with electrons.

2. A pseudovectorial spin 1 magnetic photon, analogous to the electric Ein-
stein photon: it appears in the theory of leptonic magnetic monopoles
(see: Chapters 2 and 3). The magnetic photon plays in the physics of
monopoles a role exactly similar to the role played by the electric photon
in the theory of electrons.

3. Two spin 0 photons (one electric and the other magnetic), related to 2
classes of respectively electric and magnetic fieldless phenomena; an
example is the Aharonov-Bohm effect.

4. It must be added that in the four-photon theory of light, there are
two Maxwell displacements: an electric displacement and a magnetic
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displacement. Let us recall what is the Maxwell displacement18: at the
beginning, he tried to unify the electromagnetism on the basis of several
fundamental laws: the laws of Coulomb: V: E ¼ 4pr, Ampere:
V"H ¼ 4p

c J and Faraday: V" Eþ 1
c
vH
vt ¼ 0. But he found an incoher-

ence between them because the third law depends on time and the other
ones do not. The fact was well known and was objected to by Michael
Faraday; but the critics of Maxwell went contrary to the unanimity of
physicists: he considered the law of Faraday as the right one, and he deci-
ded to introduce a time dependence into the other two laws. He replaced
the Coulomb law by a continuity lawV: Jþ vr

vt ¼ 0, owing to which the
Ampere law became V"H$ 1

c
vE
vt ¼

4p
c J. So, he found the celebrated

Maxwell equations in which appeared wave like solutions from which
Maxwell found the electromagnetic theory of light and which later
gave rise to the radio waves.
If we compare the (M) equations [Eq. (6.21)] of the electric photon with
our (M) equations [Eq. (6.26)] of the magnetic photon, the analogy is
evident: the terms of a Maxwell displacement are present in the magnetic
photon, and it may be supposed that they lead to analogous physical con-
sequences involving magnetic monopoles instead of electrons: the Ahar-
onov-Bohm effect is a first example.
Now there is another fact that has been true for 70 years, without being

pointed out until now, as far as I know. It is the fact that the de Broglie
theory, based on the principle of fusion, implies automatically the displace-
ment previously introduced byMaxwell through an external argument. The
fact is hidden because the Maxwell equations make now a unit often
abridged in different algebraic forms, while the displacements are more or
less forgotten or rejected in the subtelties of history of science. Despite
the fact that the postulate of fusion has an algebraic character, it has the
advantage of unicity and of being a direct bridge between the problem of
electromagnetism and the Dirac equation of the electron, the stronger equa-
tion of quantum mechanics.

It must be added that the de Broglie theory of the photon, being consid-
ered as a composite particle, gave rise to an extension to a general theory of
spin particles, including gravitation (as discussed later in this chapter). We
have already considered several generalizations of de Broglie’s theory of

18 See the excellent Chapter 6 of Jackson (1975). Our formalism is different from Jackson’s because
here, we are in the domain of quantum laws which are written in a vacuum.
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light, as the magnetic photon linked to the magnetic monopole, and the
Aharonov-Bohm effect, which gives rise to a new domain of electrodynam-
ical phenomena.

The suggested theory of light is a generalization of Broglie’s theory of
light, with electric and magnetic photons. A new hypothesis of the present
theory is that the spin 0 is condidered as a state of the photon with the same
rights as the spin 1: there are not only two kinds of spin-1 photons, but also
of two spin-0 photons. In other words, the photon world is divided into the
same two categories as other composite quantum objects. There are ortho-
photons of spin 1 and paraphotons of spin 0, just as there are orthohydrogen
and parahydrogen. But concerning the photon, it is a new idea, contrary to
the case of orthohydrogen and parahydrogen, known for almost a century.
This is why many questions still remain asked, such as the following:
• What happens with the spin-0 photons in the thermodynamical

equilibrium?
• We have seen that paraphotons, being fieldless, are unable to create a

force; so, are they able to produce something like a photoelectric effect?
It seems not.

• More generally, are there true quantum wave-particle objects, or “pure-
phases,” pure potentials without particles? (Pace Louis de Broglie!)

• There are arguments in favor of some of these hypotheseses. For instance,
the existence of a magnetic spin 1 photon is confirmed by the experi-
ments on the leptonic monopole. Until now, the Aharonov-Bohm
effect was a remarkable but isolated orphan effect. Here, it is integrated
in a general theory. This is fine, but a question remains: is this effect
exceptional, or is it a sample of a “class” of new phenomena? The equa-
tions define such a class mathematically, but it must be experimentally
proved that such phenomena really exist as several physical effects. We
have predicted at least one such effect: the Aharonov-Bohm effect
with magnetic monopoles, but it is not yet observed and not yet calcu-
lated with all the details.

6.2 HAMILTONIAN, LAGRANGIAN, CURRENT, ENERGY,
SPIN

6.2.1 The Lagrangian
Now, let us go back to the 16-line column wave function and the

canonical form Eq. (6.12), keeping only (C) because (D) is deduced from it:
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1
c
a4 þ b4

2
vf

vt
¼ b4ak þ a4bk

2
vf

vxk
þ i

m0c
Z

a4b4f: (6.42)

Note the presence of ða4 þ b4Þ=2 in the factor of v=vt, so it seems unes-
capable that coherent definitions for tensor densities would be obtained.
The Hamiltonian operator is

H ¼ iZ
(
b4ak þ a4bk

2
v

vxk
þ i

m0c
Z

a4b4

)
(6.43)

and the Lagrangian density is (with fþ ¼ f ðh:c:Þ)

L ¼ $iZc
(
fþ

!
1
c
a4 þ b4

2
vf

vt
$ b4ak þ a4bk

2
vf

vxk
$ i

m0c
Z

a4b4f
"
þ c:c:

)
:

(6.44)

6.2.2 The Current Density Vector
The general formula

Jm ¼ i
Z

"
vL
vf;m

f$ vL
vfþ

;m
fþ

#

(6.45)

gives, with Eq. (6.44),

Jk ¼ $cfþb4ak þ a4bk
2

f; J4 ¼ icr; r ¼ fþa4 þ b4k
2

f: (6.46)

Therefore,
R
rdv is not definite-positive. But on the other hand, we shall

find a definite-energy
R
rWdv , 0, contrary to what happens in the Dirac

electron. This result will be generalized in the general theory of particles
with spin ¼ n

2.
In terms of electromagnetic quantities, Eq. (6.45) is given by the Gehe-

niau formulas, with two kinds of terms corresponding to spin 1 and spin 0 in
the case of an electric photon (de Broglie, 1943). Here, until the end of the
next section, we give only the translation of the formulas in the electric case
(they were not translated until now in the magnetic case):

J ¼ i
Zc

½A* "HþH* " Aþ V *E$ E*V ( þ c
4

&
I*2Bþ B*I2

'

r ¼ i
Zc

½ðA*: EÞ $ ðE*: AÞ( þ 1
4

&
I*2W þW *I2

'
:

(6.47)
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For the energy tensor, we have the general formula

Tmn ¼ $ vL
vf;m

f;m $
vL
vfþ

;m
fþ

;m þ Ldmn ; (6.48)

with the Lagrangian [Eq. (6.44)], which gives

Tik ¼ $iZc
2

(
fþb4ak þ a4bk

2
vf

vxk
þ vfþ

vxk

b4ak þ a4bk
2

f

)

Ti4 ¼
Z

2

(
fþb4ak þ a4bk

2
vf

vt
þ h:c:

)
; T4i ¼ $Zc

2

(
fþa4 þ b4

2
vf

vxi
þ h:c:

)

T44 ¼ $w ¼ iZ
iZ
2
fþa4 þ b4

2
vf

vt
¼ $fþHf:

(6.49)

In the electromagnetic form, we have

Tmn ¼
1
2

!
Fml

vAl

vxn
$Al

vFlm
vxn

"
$ iZ

8

!
I*2
vBl

vxn
þ B*

m

vI2
vxn

"
þ c:c:

where : Fml ¼
vAm

vxn
$ vAn

vxm

(6.50)

In particular, the energy density rW takes the form

T44 ¼
1
2c

(!
A*:

vE
vt

"!
E*:

vA
vt

"
þ
!
A:

vE*

vt

"!
E:
vA*

vt

")

þ iZc
2

(!
I*2
vW
vt

"!
W *vI2

vt

"
$
!
I2
vW *

vt

"!
W

vI*2
vt

")
:

(6.51)

The tensor Tmn is often symmetrized, putting TðmnÞ ¼ 1
2 ðTmn þ TnmÞ, but

there are strong arguments in favor of the nonsymmetric tensor (Costa de
Beauregard, 1943; de Broglie, 1943).

In addition, we can find other tensors, the integrals of which are equal to
the integral of the precedings (they differ by a divergence). One of these
tensors is19

19 The factor m0 is surprising but according to Eq. (6.20), it disappears from the fields and potentials.
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Mik ¼ Mki ¼ m0c
2fþaibk þ akbi

2
f; Mi4 ¼ M4i ¼ $m0c

2fþai þ bi
2

f;

M44 ¼ m0c
2fþf; ði; k ¼ 1; 2; 3Þ:

(6.52)

This is a Maxwell-type tensor because we find, in electromagnetic terms,
for the electric photon:

Mi4 ¼ ðE: H*Þi þ ðE*: HÞi $ k20
&
V *Ai þ VA*

i
'
;

M44 ¼ jEj2 þ jHj2 $ k20
&
jAj2 þ jV j2

'
:

(6.53)

We recognize the Maxwellian form, up to the mass terms, and we find
Z

Mmn ds ¼
Z

Tmn ds: (6.54)

6.2.3 The Photon Spin
Let us express the angular momentum with the nonsymmetric tensor Tmn:

mik ¼ $i
c

Z
½xiT4k $ xkT4i( ds ði; k ¼ 1; 2; 3Þ; (6.55)

where mik is not a constant of motion. But, as in Dirac’s theory, we find a
constant of motion m0

ik if we add a convenient term of spin:

m0
ik ¼ mik þ Sik (6.56)

Sik ¼ iZ
Z

fþb4aiak þ a4aibk
2

f ði; k ¼ 1; 2; 3Þ: (6.57)

The dual sj ¼ εjikSik of this tensor in R3 is a pseudovector. Analogous
with the Dirac spin, we find a space-time pseudovector, by adding a time
component:

s4 ¼ cZ
Z

fþb4a1a2a3 þ a4b1b2b3
2

f: (6.58)

Now if we introduce into Eq. (6.55) the tensor TðmnÞ ¼ 1
2 ðTmn þ TnmÞ

instead of the tensor Tmn, we find the new momentum, which is equivalent
to Eq. (6.57):

m0
ik ¼ $i

c

Z h
xiTð4kÞ $ xkTð4iÞ

i
ds ði; k ¼ 1; 2; 3Þ: (6.59)
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Of course, this is a conservative tensor. The difference between this and
the theory of the electron is that the eigenvalues of thematrices in the integrals
[Eq. (6.57)] are $1, 0, and 1, instead of )1

2. We have a particle of maximum
spin 1. The space-time pseudovector sm ¼ fs; s4g has the following form in
terms of electromagnetic quantities in the case of the electric photon:

s ¼ 1
c
½E* "A$ A* " Eþ V *HþH*V (; s4 ¼

1
c
½A*: HþH*: A(:

(6.60)

Only terms corresponding to spin 1 appear in that formula. The terms
corresponding to spin 0 vanish because I1 ¼ 0; this fact is not astonishing
because m0s0 [see Eq. (6.22)]. If, we had started from Eq. (6.11) instead
of Eq. (6.12), we should be nearer to Dirac’s theory. Now consider the orbi-
tal momentum operator:

Mop ¼ r" p: (6.61)

This operator is not an integral of the motion, but we can find a com-
mutating operator by adding to Mop the new spin operators:

S ¼
.
$iZ

!
a2a3 þ b2b3

2

"
; $iZ

!
a3a1 þ b3b1

2

"
; $iZ

!
a1a2 þ b1b2

2

"/
;

(6.62)

which must be completed by

S4 ¼ $iZ
2
ða1a2a3 þ b1b2b3Þ; (6.63)

which gives with S a relativistic quadrivector. The space components of S
satisfy the spin commutation relations, and finally these definitions will be
used in the generalized theory of fusion.

6.2.7 Relativistic Noninvariance of the Decomposition
Spin 1eSpin 0

The spin operators sj ¼ εjikSik satisfy the commutation rules of an angular
momentum and they have the eigenvalues f$1; 0; 1g. The total spin s2

has the eigenvalues lðl þ 1Þ ¼ ð2; 0Þ, corresponding to l ¼ 1; 0.
In the case of a plane wave in Eqs. (6.21) and (6.22) and Eqs. (6.29) and

(6.24), one can show that the group of equations (M) is associated with
l ¼ 1, with projections s ¼ $1; 0;þ1 on the direction of propagation of
the wave: s ¼ $15right circular wave, s ¼ þ15left circular wave. For
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s ¼ 0, we have in both cases a small longitudinal electric wave (due to the
mass) for the electric photon, and a small longitudinal magnetic wave for
the magnetic photon. The group (NM) is associated with l ¼ 0.

So we can speak of (M) as a “spin 1 particle” and of (NM) as a “spin 0 par-
ticle.” However, de Broglie made an important distinction (de Broglie, 1943,
Chapter 8): although the equations (M) and (NM) are relativistically invariant, the sep-
aration between them is not covariant because it is based on the eigenvalues of the total
spin-operator s2¼ s21 þ s22 þ s23, which is not a relativistic invariant. The corre-
spondence between the field values and the eigenvalues of s2 is as follows:
1. For the electric photon:

A V E H I1 B W I2 E0 H0

2 0 2 2 0 2 0 0 2 2 ;
(6.64)

2. For the magnetic photon:

B0 W 0 H0 E0 I2 A0 V 0 I1 H E
2 0 2 2 0 2 0 0 2 2 ;

(6.65)

In both cases, the first group corresponds to the (M) equations and the
second group to (NM). We can note, when passing from Eq. (6.64) to
Eq. (6.65), the following exchanges:
• Between potentials A, V and pseudopotentials B0,W 0

• Between fields E, H and anti-fields E0,H0 [we know that E0,H 0 ¼ 0 in
Eq. (6.64) and E, H ¼ 0 in Eq. (6.65)]

• Between I1 and I2, in the group (NM) (I1 ¼ 0 in Eq. (6.64) and I2 ¼ 0 in
Eq. (6.65)
The most important fact is that there are in both groups (M) and (NM),

field quantities with s2 ¼ 2 and s2 ¼ 0, and thus spin 1 and spin 0 compo-
nents: there is no true separation between the values of spin. De Broglie has
shown (for both photons) that the separation only occurs in the proper sys-
tem, as follows:
1. Because for the electric photon, the potential ðA;V Þ is spacelike, and the

pseudopotential ðB; W Þ is timelike, so that V and B disappear from
(6.51), and only s2 ¼ 2 remains in (M), conversely, only s2 ¼ 0 remains
in (NM) because we know that E0 ¼ H0 ¼ 0.

2. For the magnetic photon, the same thing happens because this case fol-
lows from the preceding by multiplying an electric solution by g5,
exchanging polar and axial quantities:

ðE;HÞ4ðH0;E0Þ; ðV ;AÞ4ðW ;BÞ; ðI1; I2Þ4ðI2; I1Þ: (6.66)
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Therefore, the potential ðA;V Þ becomes timelike and the pseudopoten-
tial (B, W) becomes spacelike. And we have once more in the proper frame
s2 ¼ 2 in (M) and s2 ¼ 0 in (NM), taking into account that we have
E ¼ H ¼ 0 instead of E0 ¼ H0 ¼ 0.

In conclusion, the (M) and (NM) groups of equations cannot be rigor-
ously separated, except in the proper frame, and they must be considered
as forming one block, for two reasons:
1. The difficulty of separating spin 1 and spin 0 means that the composite

photon cannot be considered as a spin 1 particle, but as a particle with
a maximum spin 1, just as a two-electron atom or a two-atom molecule.
It is noteworthy that the proper state in which the 1-components and
0-components are separated is obviously the same for both
components.

2. On the contrary, the presence of two photons (electric and magnetic) is
inscribed in the very structure of the theory; their separation is covariant
and more radical than the separation of spin-states. The simultaneous
presence in (M) and (NM) equations of potentials and pseudopotentials
and of fields and anti-fields (even if half of them equal zero), and the
“migration” of these quantities from one group of equations to the other
according to the type of photon constitute another link.
Of course, at the present stage of the problem, a question remains: what

is this spin 0 component, physically? It could seem that all these questions are
raised by the hypothesis m0s0. Of course, they could be avoided if we
admit that m0 ¼ 0. But it would be certainly a bad idea to shield the theory
from a physical difficulty by a formal condition, at the expense of a more
synthetic structure, as was shown previously. A better answer will be given
later in this chapter, by the simple fact that the spin 0 component is a photon
state that plays a physical role, just as the spin 1 state, and they must be
included in the same global theory of light.

6.2.8 The Problem of a Massive Photon
We have seen that many features of de Broglie’s theory of the photon,
including its logical coherence, are due to the hypothesis m0s0. But even
if m0 is small, it implies many differences with ordinary electromagnetism.
These differences were examined in a number of papers (e.g., de Broglie,
1936, 1940e1942, 1943; Costa de Beauregard, 1997b, 1983; Borne,
Lochak, & Stumpf, 2001; Lochak, 1995b, 2000, 2002, 2007b; Lochak and
Costa de Beauregard, 2000).
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6.2.9 Gauge Invariance
Obviously, the common phase invariance disappears if m0s0, which then
calls for some comments:
• First, why do we find in de Broglie’s theory of light the Lorentz gauge as a

field equation? Simply because it is the only relativistically invariant, lin-
ear differential law of the first order: it was the only possibility.

• There remain some practical problems. The relations between potentials
and fields show that they are of the same order of magnitude. The mass
terms are thus of k0 order: that is, very small. Therefore, in general, the
gauge symmetry remains, up to a negligible error, and we can still choose
with good approximation the convenient gauge for most practical prob-
lems, provided that physics does not impose a particular choice.

• In the present theory, the potentials are deducible from the fields, thus
from observable phenomena: they are no longer mathematical fictions,
but physical quantities. It must be noted that such a conception was
already devised by Maxwell himself (Maxwell, 1873).
This is important for zero-field phenomena only because of a potential,

as is the case for the Aharonov-Bohm effect. The fact that this last effect is
not gauge invariant is not an objection because we know other physical
quantities that are only partially defined by some effects but exactly defined
by others: for instance, energy is defined by spectral laws up to an additive
constant, but exactly fixed by relativistic effects.

De Broglie gave another example of a physically defined potential: the
electron gun (de Broglie, 1943), in which the potential V between the elec-
trodes is exactly defined for several reasons:
1. The measurable velocity of the emerging electron is given by the increase

of energy, which is equal to eV.
2. The phase of the wave associated with the electron is relativistically

invariant only if the frequency and the phase velocity obey the classical
de Broglie formula, which imposes the gauge of V (as already noted).

3. The fundamental reason is that the intertia of energy does not allow an
arbitrary choice of the origin of electrostatic potentials, which actually are
not gauge invariant. They are physical quantities, related to mesurable
effects. More recently, Costa de Beauregard and Lochak published
many other impressive experimental examples, in favor of the physical
sense of electromagnetic potentials.
After several attempts, de Broglie and other authors supposed that the

Dirac particles that were constituted by fusion photons and gravitons were
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neutrinos. For a long time, the neutrino was considered a massless particle,
with arguments based on gauge invariance, separation of chiral components,
etc. But new theoretical arguments based on hypothetical oscillations
between different kinds of neutrinos, the subsequent need of coupling
constants, and some experimental evidence pointed to a possible neutrino
mass. If this is confirmed by facts, de Broglie’s fusion theory will have as a
consequence the prediction of a photon and a graviton mass, which will
become in turn a credible idea. It must be confessed that the leptonic
monopole theory (which is due to the author of these lines, who is a
member of the same theoretical school) is not in agreement with the last
opinion. Nevertheless, it must be remembered (see Chapter 4 of this part
of the book) that there is also a theory of massive magnetic monopoles
with the same symmetries, but it is a nonlinear theory, different from the
present one.

6.2.10 Vacuum Dispersion
If m0s0, we can write

hn ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffi
1$ v2

c2

q /v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1$
m20c2

h2n2

s

ðv ¼ group velocityÞ: (6.67)

Thus, the vacuum must be dispersive, which was not yet observed, but it
may be stressed that the supposed value m0< 10$45g implies a Compton
wavelength: lc > 108cm ¼ 103km, so that the substitution of the Coulomb
potential 1r by the corresponding Yukawa potential

e$k0 r

r has a very small prac-
tical incidence, as with other numerical quantities. But the consequences of
the symmetry laws are important.

Another question is that one could in principle observe a photon with a
velocity smaller than c in the vacuum. In de Broglie’s time, his estimations
proved that it was impossible if m0 < 10$45g (de Broglie, 1936, 1940e
1942). Nevertheless, with the progress of experimental physics, such a pos-
sibility must be reexamined.

6.2.11 Relativity
Practically, the velocity predicted for the photon is so near from c, that the
difference has not any consequence (at least at the present level of knowl-
edge). But the problem is: how shall we built the theory of relativity? De
Broglie’s answer was one of his favorite jokes: “Light is not obliged to go
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with the velocity of light.” In other words: we need, in relativity, a max-
imum invariant velocity, but we do not need this velocity to be the veloc-
ity of light. It only happens that, in a vacuum, the velocity of light is close
to it.

6.2.12 Blackbody Radiation
In a given unit-volume, there are dnn ¼ 4pv2

c3 dv stationary waves of light in
an elementary interval of frequencies, and we must have twice this number
because of the transversality of light waves, which gives a factor of 8 in
Planck’s law of blackbody radiation. But if m0s0, it seems that we must
multiply by 3 (instead of 2) because there is a longitudinal electric-compo-
nent that gives 12 in Planck’s law.

But this is wrong. The answer is actually that if we apply the formula
for energy, it is shown that the longitudinal part of the field (so as the
one, corresponding to potentials) is of the order of k0dthat is, it is neg-
ligible (de Broglie, 1936, 1940e1942), so that it takes no part in the
observed equilibrium and the factor 8 is the right one. This argument, given
by de Broglie, was later independently confirmed by Bass and Schr€odinger
(1955).

6.2.13 A Remark on Structural Stability
A physical theory has (at least) three truth-criteria: experiment, logical con-
sistency, and structural stability. The first two points are evident, while the
third is less so. It means that a theory must have a sufficiant adaptability to
withstand slight experimental deviations without its mathematical frame
being destroyed.

Actually, most physical theories are too rigid and have structural unstabil-
ities: for instance, Hamiltonian dynamics is structuraly unstable because its
formalism does not allow the slightest dissipation. This means that the con-
dition of structural stability, despite the strength of the argument and the
high authority of the signatures, cannot be respected by all theories. But,
at least, one must eliminate arithmetical conditions or too precise symme-
tries, which could not be verified experimentally.

An example is the mass of the photon. It is proved experimentally that
the mass is small, but it cannot be proved that this mass is exactly zero because
it would be an arithmetical condition. In other words, electromagnetic gauge
invariancedas a law of symmetrydmay be proved approximately, not
exactly.

Theory of the Leptonic Monopole 111



It would be extremely worrying if electromagnetism needed exactly zero
mass and gauge invariance20. And this is not the case, but by virtue of Bro-
glie’s theory of photons, the smallness m0 implies negligible deviations in the
experimental facts.

6.3 THEORY OF PARTICLES WITH MAXIMUM SPIN n
6.3.1 Generalization of the Theory
The general theory is the subject of the second part of de Broglie

(1943). Here, we are giving only a short summarydeven shorter than for
the case of spin 1. The link with the monopole will appear later.

6.3.2 Generalized Method of Fusion
Extending Eq. (6.7), the fusion of n Dirac equations gives a generalization of
Eq. (6.8):

1
c
vfikl.

vt
¼ aðpÞk

vfikl.

vxk
þ i

m0c
Z
aðpÞ4 fikl. ðp ¼ 1; 2;.; nÞ: (6.68)

Thus, we have n equations instead of 2, and a 4n component wave func-
tion (a spinor of nth rank) instead of 16 components for the photon. And
there are 4n matrices ðaðpÞr Þ with 42n elements:

$
aðpÞr

%

ik.opq.;i0k0;.o0p0q0.
¼ d0iid

0
kk.d0ooðarÞ

0
ppd

0
qq.: (6.69)

They obey the Eq. (6.10) relations:

aðpÞr aðpÞs þ aðpÞs aðpÞr ¼ 2drs; aðpÞr aðqÞs $ aðqÞs aðpÞr ¼ 0 ðif psqÞ: (6.70)

The same problem as in Eq. (6.8), occurs here: there are n times too
many equations (whereas for the photon, we had twice as many). We
have indeed n4n equations for 4n components of the wave function. The
answer is almost the same.

6.3.3 “Quasi-Maxwellian” Form
We shall proceed as in x6.3.1). But we first put the following expression:

20 A theory of A. Eddington was based on 16 degrees of freedom and needed the exact formula
1
a ¼

16ð16þ1Þ
2 þ 1 ¼ 137 (a ¼ fine structure constant). Unfortunately, measurement gives

1
a ¼ 137:036:::
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FðpÞ ¼ aðpÞk
v

vxk
þ i

m0c
Z
aðpÞ4 : (6.71)

We have the relation

FðpÞFðqÞ ¼ FðqÞFðpÞ; cp; q;
$
FðpÞ

%2
¼ D$ k20 ; (6.72)

which implies that the wave obeys the Klein-Gordon equation. Now,
Eq. (6.68) takes the form

1
c
vf

vt
¼ FðpÞf; p ¼ 1; 2;.n: (6.73)

By adding these equations, we find a new evolution equation generaliz-
ing the (A) expression in Eq. (6.11):

ðAÞ 1
c
vf

vt
¼ Ff; F ¼ 1

n

Xn

p¼1
FðpÞ: (6.74)

Now, subtracting the expressions Eq. (6.73) from each other in a con-
venient way, we can eliminate the time derivatives and find (n $ 1) “con-
dition equations.” This may be done in many ways. For instance, we can
choose the following system, similar to the (B) expression in Eq. (6.11):

ðBÞ BðpÞf ¼ Fð1Þ $ FðpÞ

2
f ¼ 0 ðp ¼ 2; 3;.; nÞ: (6.75)

It is easy to prove that the new systems (A) and (B) are equivalent to Eq.
(6.68) or Eq. (6.72). Owing to Eq. (6.69), one can see that F and B com-
mute, but their product doesn’t equal zero, contrary to what happened
with the operators on the right-hand side of Eq. (6.11) in the special case
n ¼ 2:

BðpÞF ¼ FBðpÞs0: (6.76)

This means that, contrary to Eq. (6.11), we cannot use Eqs. (6.74) and
(6.75) to prove that the conditions (B) are deducible from the evolution
equation (A). However, as a consequence of Eq. (6.63), the left-hand sides
BðpÞ F of Eq. (6.75) are solutions of Eq. (6.73), so that, if the conditions (B)
are satisfied at an initial time t ¼ 0, they are satisfied at all time.

On the other hand, we can prove the compatibility of the (n $1) equa-
tions (B), so that the compatibility of the system (6.67)dor, equivalently of
Eqs. (6.73) and (6.74)dis proved.
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6.3.4 The Density of Quadri-current
Generalizing the case of maximum spin 1, de Broglie introduced another set
of matrices (de Broglie, 1943):

BðpÞ
4 ¼ að1Þ4 að2Þ4 .aðp$1Þ

4 aðpþ1Þ
4 .aðnÞ4 : (6.77)

Each is the product of all the values of aðiÞ4 except the one corresponding
to the index p. The quadri-current density is as follows, and it is easy to ver-
ify that it is conservative:

Jk ¼ $cf * 1
n

Xn

p¼1
apkB

p
4f; r ¼ f * 1

n

Xn

p¼1
Bp
4f;

vr

vt
þ vkJk ¼ 0: (6.78)

Generalizing a remark made in x 5.2, it is interesting to examine the r

density. Following de Broglie, we shall do it in the case of the plane wave.
Let us note, by the way, that it is not difficult to calculate a plane wave
for a particle of maximum spin n=2: the phase is evident, and the amplitudes
are given by the n products of 4 amplitudes of n Dirac plane waves, which
gives 2n constants restricted by the fusion conditions. The calculation is
rather long (de Broglie, 1940e1942), but the result is simple. We find

Q ¼ r Q ; (6.79)

with

r ¼
!
m0c2

W

"n$1

jfj2 ðm0 and n ¼ mass and number of spin 1=2 particlesÞ

(6.80)

From this, we see the following:
• If n is odd, the sign of r is definite-positive, as in the case n¼ 1 of a Dirac

electron.
• If n is even, r has the same sign as energy, and it is indefinite: it was the

case for a photon (spin 1), and it is the case for a graviton (spin 2).
It is interesting to note, with de Broglie, the curious presence, in Eq.

(6.80), of the (n $ 1)th power of the Lorentz contraction, which means
that the density r, integrated over a volume (

R
rdv), will be contracted

exactly n times (the number of elementary spin 1/2 particles). The exception
is the Dirac particle, for which n $ 1 ¼ 0, so that the factor disappears and
the integral is contracted only by the integration-volume itself. De Broglie
conjectured that this factor is perhaps an echo of a hidden spatial structure of
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the composite particle, which we can describe only as a point in the present
state of linear quantum mechanics.

6.3.5 The Energy Density
We begin with an elementary calculation of the energy density using the pre-
ceding density r for a plane wave. The definition of the density rmeans that
all the mean values are obtained by the integration of a physical quantity
multiplied by r.

The energy density is thus obtained (in the case of a plane wave) owing
to Eq. (6.80):

rW ¼
!
m0c2

W

"n$1

W jfj2: (6.81)

Here, the power ofW is not (n $ 1) but (n $ 2), so that we find a result
opposite to the result for r:
• If n is odd, rW has the same indefinite sign as energy: it was the case for

n ¼ 1, for the Dirac electron.
• If n is even, the sign of rW is definite-positive, as it was for the photon

and as it will be for the graviton. This is confirmed by more sophisticated
calculations using the energy tensor density.
We shall introduce two classes of tensors. The first, named “corpuscular”

by de Broglie, is given by the receipts of quantum mechanics. The second
class, called by de Broglie “of type M” (with M standing for “Maxwell”),
is wider and is inspired by electromagnetism.

6.3.6 The “Corpuscular” Tensor
We use the B matrices definited in Eq. (6.77) with the following notation:

rU ðpÞ
i ¼ aðpÞi ði ¼ 1; 2; 3;Þ; U ðpÞ

i ¼ 1; ðp ¼ 1; 2; :::; nÞ: (6.82)

The tensor is then (de Broglie, 1943), generalizing the spin 1 case:

Tmn ¼ Tnm ¼ Zc
4in

Xn

p¼1

2

6664

f*U ðpÞ
m BðpÞ

4
vf

vxn
$ vf*

vxn
U ðpÞ
m BðpÞ

4 f

þf*U ðpÞ
n BðpÞ

4
vf

vxm
$ vf*

vxm
U ðpÞ
n BðpÞ

4 f

3

7775: (6.83)

We verify its conservation by virtue of the equations

vnTmn ¼ vmTmn ¼ 0: (6.84)
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It is interesting to verify that the tensor takes the form that is to be
expected for a plane wave, and we find indeed the following matrix for
its components (p ¼ momentum, v ¼ group velocity):

8
>><

>>:

rp1v1 rp1v2 rp1v3 rp1c
rp2v1 rp2v2 rp2v3 rp2c
rp3v1 rp3v2 rp3v3 rp3c
rp1c rp2c rp3c rW

9
>>=

>>;
: (6.85)

In particular T44 is the quantity given in Eq. (6.81).

6.3.7 The “type M” Tensors
At first, we shall generalize the formula [Eq. (6.77)] by the definition of a set
of operators of rank m:

Bðpq.Þ
4 ¼ a14a

2
4.ap$1

4 apþ1
4 .aq$1

4 aqþ1
4 .: (6.86)

This is the product of all the values of ar4 (r ¼ 1, 2,.,n) except those for
which r is equal to one of the m indices p, q. of B.Using of these operators
and Eq. (6.81), we define a set of tensors of rank m (de Broglie, 1934c):

Mm ¼ m0c
2f*

P
pq.

U ðpÞ
i U ðqÞ

j .Bðpq.Þ
4

amn
f;

!
amn ¼ n!

ðn$MÞ!

"
: (6.87)

These tensors are obviously symmetric, but we keep only those values of
the rank m ¼ 2r that are even. Thus, we have defined (for a particle of max-
imum spin n) n/2 tensors if n is even and (n$ 1)/2 tensors if n is odd. Finally,
we contract each tensor of rank 2r, over 2r $ 2 indices, which gives a num-
ber equal to the half of the greatest even number contained in n of tensors of
rank 2, according to the following formula:

M ðrÞ
ij ¼

X4

ijkl.

Mkl.
ijkl.: (6.88)

We must remember that, applying the receipt to real space-cordinates,
we must change the sign when indices 1, 2, and 3 go up or down.

These tensors were defined by de Broglie as tensors “of type M.” By vir-
tue of the general equations [Eq. (6.87)], we have, just as for the tensor T:

vnM ðrÞ
mn ¼ vmM ðrÞ

mn ; (6.89)
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and we have n/2 tensors M ðrÞ of rank 2 if n is even and (n $ 2)/2 tensors if
n is odd.

A priori, each conservative tensor may be considered as an impulse-
energy tensor, and it may be shown that, for a plane wave, c r every tensor
M ðrÞ

mn gives exactly the table of components [Eq. (6.83)]. This is not true
for other solutions, but it remains true of the integrals:

Z
Tmnds ¼

Z
Mr

mnds; cr: (6.90)

6.3.8 Spin
Starting from Eq. (6.72)dthe generalization of Eq. (6.11)dwe have the
same orbital operator, and the spin operators are now

Si ¼ Z
Xn

p¼1
sðpÞi ; ði ¼ 1; 2; 3Þ; S4 ¼ Z

Xn

p¼1
sðpÞ4 : (6.91)

It would be difficult to reproduce here the general nomenclature of spin
states and (for an even number of spin 1/2 particles) the decomposition of
wave functions in terms of tensor components. This nomenclature is based
on the Clebsch-Gordan theorem for the product of irreducible representa-
tions, but it is completed in (de Broglie, 1934c), which defines the set of
independent constants of a plane wave and the symmetry of tensors defined
by an even number of particles.

These problems are treated in a different form by Fierz, whose work is
based not on the fusion theory but on some conditions added to the field
obeying the Klein-Gordon equation, to describe a spin n/2 particle. This
point of view was developed by Fierz and Pauli (1939a, b) and on the basis
of Dirac (1936) on the generalization of the equation of the electron, for
higher spin-values.

6.4 THEORY OF PARTICLES WITH MAXIMUM SPIN 2
6.4.1 The Particles of Maximum Spin 2. Graviton
Fierz and Pauli (1939a, b) were the first to discover the connection

between the equation of a particle of spin 2 and the linear approximation
of the Einstein equation of a gravitation field. This approximation was given
by Einstein himself (Einstein, 1916, 1918). It may be found, for instance, in
Laue (1922) or M€oller (1972). Einstein (1916) was the first study in which he
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formulated the idea of gravitational waves. He even alluded to a possible
modification of gravitation theory by quantum effects, analogous to the
modification of Maxwell’s electromagnetism.

It must be stressed that the quantum theory of gravitation, developed by
de Broglie and Tonnelat (de Broglie, 1934a,b,c; Tonnelat, 1942) on the
basis of the fusion method, is not based on a particle of spin 2, but on the
particle of maximum spin 2. This is an important point for two reasons:
1. The fusion theory raises the question: is the graviton a composite particle,

just as the photon and all particles of spin higher than ½?
2. In the fusion theory, gravitons don’t appear alone. They are linked to

photons. This theory is actually a unitary theory of gravitation and elec-
tromagnetism (at least at the linear approximation), and the fields are not
gathered by an extended geometry, but by the fusion of spins.

6.4.2 Why are Gravitation and Electromagnetism Linked?
When you ask why gravitation and electromagnetism are linked, formally
you could say that fields are linked by Clebsch-Gordan’s theorem
because

D1
2
"D1

2
"D1

2
"D1

2
¼ D2 þ 3D1 þ 2D0: (6.92)

Therefore, in the fusion of four spin 1/2 particles, we must find one par-
ticle of spin 2, three particles of spin 1, and two particles of spin 0. In partic-
ular, we have gravitons and photons. To this point we must add the spin 0
photons, the physical meaning of which is related to the Aharonov-Bohm
effect, as was developed in the first part of x4.

De Broglie gave an interesting argument: he defined a particle of max-
imum spin 2 by the fusion of two particles of spin 1, described by the quad-

ripotentials Að1Þ
m ¼ fAð1Þ;Vg and Að2Þ

m ¼ fAð2Þ;Vg, and the invariants

Ið1Þ2 ; Ið2Þ2 (Ið1Þ1 ; Ið2Þ1 ¼ 0. This was because m0s0. We are only considering
the electric case. The fusion gives

Að1Þ
m " Að2Þ

m ; Að1Þ
m " Ið2Þ2 ; Ið1Þ2 " Að2Þ

m ; I ð1Þ2 " Ið2Þ2 : (6.93)

The first product is a tensor of rank 2 that defines a symmetric and an
antisymmetric tensor:

AðmnÞ ¼
AðmnÞ þ AðnmÞ

2
; A½mn( ¼

AðmnÞ $ AðnmÞ
2

: (6.94)
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The products Að1Þ
m " Ið2Þ2 and I ð1Þ2 " Að2Þ

m are vectorlike quantities Pð1Þ
m ,

Pð2Þ
m , and it may be hoped that they will be photon potentials. The antisym-

metric tensor A½mn( suggests the electromagnetic field.
The symmetric tensor AðmnÞ cannot be interpreted at this level of expo-

sition, but actually, we can guess that it will be related to gravitation.
De Broglie shows, owing to a study of plane waves, that Pð1Þ

m ; Pð2Þ
m and

the antisymmetric tensor A½mn( are related to spin 1; AðmnÞ is linked to spin
2 only if it is reduced to a zero-spur tensor because spur AðmnÞ ¼ AðmmÞ is
an invariant; and it will be actually related to spin 0, just as is the invariant
Ið1Þ2 " I ð2Þ2 .

Now it must be remembered that, as was shown in the case of the pho-
ton, the splitting between different spin states is not relativistically covariant because
it is based on the total spin operator which is not a relativistic invariant.
Therefore, in the fusion theory, gravitation cannot appear without electro-
magnetism. Furthermore, it will be shown that, if m0s0, splitting between
spin 2 and spin 0 is impossible, and the interpretation of this fact is highly
significant.

6.4.3 The Tensorial Equations of a Particle ofMaximumSpin 2
We give only the tensorial form generalizing x 4.1. The total wave equations
[Eq. (6.11) for n ¼ 4] would have 44 ¼ 256 components with 168 inde-
pendent quantities (de Broglie, 1934c):

ðAÞ

vmfðnrÞ $ vnfðmrÞ ¼ k0f½mn(r

vrf½rm(n ¼ k0fðmnÞ

vmf½rs(n $ vnf½rs(m ¼ k0f½mn(½rs(

vεfð½εr(½mn(Þ ¼ k0f½mn(r

: (6.95)

Here, fðmnÞ is a symmetric tensor of rank 2, f½mn(r is a tensor of rank 3
antisymmetric with respect to the two first indices, and f½mn(½rs( is a tensor
of rank 4 antisymmetric with respect to mn and rs, but symmetric with
respect to these pairs. A consequence of Eq. (6.95) is

vnfðmnÞ ¼ vrvnf½rm(n ¼ 0

f½rr( ¼
1
2
f½mr(½mr(; vnfðrrÞ ¼ k0f½nr(r:

(6.96)
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The group (B) is divided in three subgroups where new tensors of rank 2,
3, and 4 appear:

ðB1Þ

vmf
ð1Þ
ðnrÞ $ vnf

ð1Þ
ðmrÞ ¼ k0f

ð1Þ
½mn(r

1
2

$
vrf

ð1Þ
½rm(n $ vrf

ð1Þ
½rn(m

%
¼ k0f

ð1Þ
½mn(

vmf
ð1Þ
½rs(n $ vnf

ð1Þ
½rs(m ¼ k0f

ð1Þ
½mn(½rs(

vεf
ð1Þ
ð½εr(½mn(Þ ¼ k0f

ð1Þ
½mn(r

: (6.97)

Note the antisymmetries (square brackets). From Eq. (6.97), we deduce
the identities as follows:

f
ð1Þ
½nm(n ¼ f

ð1Þ
ð½mn(½rn(Þ ¼ 0: (6.98)

The equations (B2) and (B3) are identical, and we have

ðB2; B3Þ

vmc
ð1Þ
n $ vnc

ð1Þ
m ¼ k0c

ð1Þ
½mn(

vrc
ð1Þ
½rn( ¼ k0cð1Þn

vmc
ð1Þ
n ¼ k0cð1Þrn

vrc
ð1Þ
½mn( ¼ k0c

ð1Þ
½mn(r

: (6.99)

In the third equation, cð1Þ
rn is neither symmetric nor antisymmetric.

Eq. (6.99) entails

cð1Þrr ¼ 0; cð1Þmn $ cð1Þnm ¼ c
ð1Þ
½mn(

c
ð1Þ
½nr(r ¼ $ cð1Þn ; c

ð1Þ
½mn(r þ c

ð1Þ
½nr(m þ c

ð1Þ
½rm(n ¼ 0:

(6.100)

Finally, we find a last group of equations:

ðCÞ

vmf
ð0Þ
n ¼ vnf

ð0Þ
m ¼ k0f

ð0Þ
ðmnÞ

vmf
ð0Þ
m ¼ k0vmfð0Þ

vmf
ð0Þ ¼ k0m

ð0Þ
f

: (6.101)

The equations (B1), (B2), and (B3) are three realizations of total spin 1. It
is evident for (B2) and (B3) because putting

Fm ¼ k0cð1Þm ; F½mn( ¼ k0cð1Þmn (6.102)
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and defining potentials and fields as we did in Eq. (6.20), we find theMaxwell
equations with mass (but we shall see that it needs some additional notation).

The correspondence is less evident for Eq. (6.97). Instead of Eq. (6.102),
we must write

Fm ¼ k0
6
εmlnrf

ð1Þ
½ln(r; F½mn( ¼ k0fð1Þ

mn ; (6.103)

where εmlnr is the Levi-Civita symbol. Applying Eq. (6.20), we find the
Maxwell equations.

Now, (C) is a realization of spin 0 as may be seen by comparing Eq.
(6.101) with Eq. (6.22). But here we find a difficulty that justifies the
preceding remarks: de Broglie (who did not know the magnetic case), con-
sidered only the electric photon [Eq. (6.21)] and he identified Eq. (6.101)
with the non-Maxwellian equations [Eq. (6.22)]. But this implies the iden-
tity 4ð0Þ¼ I2, where 4ð0Þ is a scalar while I2 is a pseudoscalar.

In de Broglie’s time, people was less careful about parity than now, and he
wrote that Eqs. (6.101) and (6.22) “are entirely equivalent (at least when vec-
tors and pseudovectors are assimilated).” Today, we pay more attention to
parity and we cannot neglect such a discrepancy: an equality like fð0Þ ¼ I2
is unacceptable. There are two possible solutions:
1. We could admit that if fð0Þ ¼ I2 ¼ 0, fð0Þ ¼ I2. Thus, the spin 0-com-

ponent (C) vanishes. But there is a second spin 0-component, hidden in
the equations (A) in the form of an invariant fð0Þ, a vector fð0Þ

m , and a
symmetric tensor fð0Þ

ðmnÞ, that we can define as

fð0Þ ¼ f
ð0Þ
ðrrÞ ; fð0Þ

m ¼ f
ð0Þ
½mr(r; f

ð0Þ
ðmnÞ ¼ fð½mr(½nr(Þ $ fðmnÞ: (6.104)

One can show using Eq. (6.94) that these tensors obey the group C of
Eq. (6.101), but once more, if fð0Þ is a true scalar, we can write fð0Þ ¼ I2
only if fð0Þ ¼ I2 ¼ 0. This implies that Eq. (6. 101) is submitted to the con-
dition sp fð0Þ

ðrrÞ ¼ 0 that was a priori supposed by Fierz and Pauli, who based
their theory on a spin 2 (and not a maximum spin 2) particle. De Broglie
criticized this postulate as artificial.

This suggestion, based on parity, could be considered as the justification of
their hypothesis. However, it may be pointed out, as de Broglie did, that the
splitting of spin components is not covariant. It is, at least, the case for the con-
dition fð0Þ ¼ I2 ¼ 0, in spite of the fact that the equality sp fð0Þ

ðrrÞ ¼ 0 is cova-
riant. Thus, the problem remains unsolved. But there is a second proposition.
2. We can ask the question: Is fð0Þ ¼ I2 a good equality? Perhaps instead it

is fð0Þ ¼ I1, which is covariant because I1 is a true invariant. In such a

Theory of the Leptonic Monopole 121



case, Eq. (6.101) must not be identified with Eq. (6.22), but rather with
Eq. (6.27). Is this possible? It seems so.
Let us go back to Eq. (6.92). The products Að1Þ

m " Ið2Þ2 and Ið1Þ2 " Að2Þ
m ,

denoted as Pð1Þ
m , Pð2Þ

m , were considered by de Broglie as vectors, but he said,
more prudently, that they were “vectorlike”. Actually, they are pseudovec-
tors because they are the products of a polar-vector by a pseudoscalar.
Therefore, Pð1Þ

m and Pð2Þ
m are not polar potentials but pseudopotentials of

magnetic type as are those that appear in Eq. (6.26). On the contrary, the

product I ð1Þ2 " Ið2Þ2 of two pseudoscalars is a true scalar of the same type as
I1, which appears in Eq. (6.27), and it can be identified.

The answer to the difficulty is that the third photon associated with the
graviton is not electric but magnetic.

Let us suppose that, instead of introducing only electric photons, we
introduce a magnetic photon in the symbolic formulas Eq. (6.92)] with
pseudopotentials Bð1Þ

m ;Bð2Þ
m , and pseudoscalars I ð1Þ2 ; I ð2Þ2 . The fusion gives

Bð1Þ
m ;Bð2Þ

m ; Bð1Þ
m " I ð2Þm ; Ið1Þm " Bð2Þ

m ; I ð1Þm " Ið2Þm ; (6.105)
and we see the following:
• The spin 2 product: Bð1Þ

m " Bð2Þ
m has the same symmetry as Að1Þ

m " Að2Þ
m

because the axial character of Bð1Þ
m " Bð2Þ

m is annihilated by the product.
• For the same reason, the spin 0 product Ið1Þ1 " I ð2Þ1 is a scalar, as was

I ð1Þ2 " Ið2Þ2 .
• The spin 1 products Bð1Þ

m " Ið2Þm ; I ð1Þm " Bð2Þ
m are pseudovectors, as

Að1Þ
m " I ð2Þ2 ; Ið1Þ2 " Að2Þ

m : they are products of a pseudovector by a scalar,
while the latter were products of a polar vector by a pseudoscalar.
Thus, we find a magnetic photon whether we start from electric or from

magnetic photons, and we can assert that one of the photons associated with
the graviton is not electric but magnetic.

6.5 QUANTUM (LINEAR) THEORY GRAVITATION
6.5.1 The Particle of Maximum Spin 2. Graviton
Now, we shall follow de Broglie (1943) and Tonnelat (1942) and con-

sider the general equations (A) when spur fð0Þ
ðrrÞ s0. But we shall not be able

to separate the spin 2 component from its spin 0 part.
We start from Eqs. (6.81) and (6.82) and the Klein-Gordon equation,

verified by all the field quantities:

,f ¼ $k20f
&
, ¼ $vrvr

'
: (6.106)
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The metric tensor gðmnÞ will be taken at the linear approximation:

gðmnÞ ¼ dmn þ hðmnÞ
$
hðmnÞ - 1

%
: (6.107)

At this limit, the propagation of gravitation waves is given by

,gðmnÞ ¼ $2RðmnÞ

$
RðmnÞ ¼ grsRð½mr(½ns(Þ

%
; (6.108)

where Rð½mr(½ns(Þ is the tensor of Riemann-Christoffel; in the Euclidian
regions of space-time, we have the d’Alembert equation,gðmnÞ ¼ 0 without
a second member. This is true if we use “isothermic” coordinates xm, for
which D2xm ¼ 0; D2 is the second-order Beltrami differential parameter.

Now it seems that metrics could be defined by

gðmnÞ ¼ fðmnÞ: (6.109)

But Tonnelat remarked that, according to Eq. (6.98), this implies
vmgðmnÞ ¼ 0, which is wrong because “isothermic” coordinates obey the
relation21

vmgðmnÞ ¼
1
2
vngðrrÞ

$
gðrrÞ ¼ gðmnÞd

ðmnÞ
%
; (6.110)

and the second member is not equal to zero. Eq. (6.96) thus contradicts Eq.
(6.95), which is why Tonnelat suggested the following metrics (which is
possible because k0s0):

gðmnÞ ¼ fð½mr(½ns(Þ ¼ fðmnÞ þ
1
k20

vmvnfðrrÞ: (6.111)

From this, it follows immediately that

vmgðmnÞ ¼ vmfð½mr(½ns(Þ ¼ vnfðrrÞ (6.112)

So we get from Eqs. (6.82), (6.111), and (6.112):

gðrrÞ ¼ 2fðrrÞ/vmgðmnÞ ¼
1
2
vngðrrÞ (6.113)

in accordance with Eq. (6.96).
Now, from Eq. (6.97), we deduce that gðmnÞ obeys the Klein-Gordon

equation, as other field-quantities do:

,gðmnÞ ¼ $k20gðmnÞ: (6.114)

21 It must be noted that we do not have grr ¼ grsgrs because this quantity, in the present case, is equal to 4.
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We have to identify Eq. (6.114) with Eq. (6.94), such that

RðmnÞ ¼
1
2
k20gðmnÞ: (6.115)

Now, the tensor of Riemann-Christoffel may be deduced as the linear
approximation from Eqs. (6.111), (6.81), and (6.82):

fð½mr(½ns(Þy
2
k20

Rð½mr(½ns(Þ: (6.116)

This formula is possible only if m0s0, which imposes a curvature of the
universe. Indeed, k20=2 is nothing but the cosmological constant (which,
unfortunately, Einstein disliked), defined by

RðmnÞ ¼ lgðmnÞ; (6.117)

where l is related to a natural curvature of space-time. In Euclidian space,
l ¼ 0, in a de Sitter space of radius R, we have l ¼ 3=R2. Therefore:

l ¼ k20
2
¼ m20c

2

2Z2
; (6.118)

and the graviton mass is related to a natural curvature of radius R:

m0 ¼
Z

ffiffiffi
6

p

Rc
: (6.119)

If R ¼ 1026cm, the graviton (and photon) mass is

m0 ¼ 10$66g: (6.120)

The spin 0 may be eliminated from the equations of spin 2 only in one of
two cases:
• By the a priori supposition that Fð0Þ ¼ 0 (Fierz equations)
• At the limit case m0 ¼ 0, when the radius of the universe is infinitedthat

is, the Euclidian case
In conclusion, the quantum theory of gravitation based on de Broglie’s

fusion theory raises the important question of a composite nature of photon
and graviton, and above all, the theory furnishes the beginning of the quan-
tum unitary field-theory of electromagnetism and gravitation. It only gives
the beginning, however, because it is linear.

Two more remarks are relevant here:
• It could be asked whether the obstinate efforts of Einstein and other great

physicists and mathematicians to find a unitary field theory had any basis,
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given that we are aware of hundreds of particles and it would seem that
there is no reason to pay particular attention to only two of them: the pho-
ton and graviton. De Broglie’s theory gives a reason for this, though: these
particles are the only ones that are linked by spin properties in the fusion
procedure. This argument is exterior to the geometrical path followed
by Einstein.

• Concerning symmetry, the fact that a photon associated with the gravi-
ton could be magnetic instead of electric, as has been suggested, signifies
the intrusion of duality, chirality, and magnetic monopoles instead of
electric charges. It is certainly of interest that a photon is perhaps not the one
that was expected, and it must be stressed that there is another photon with
zero spin.

6.5.2 Comparison with Other Theories
First, we must emphasize the priority of Louis de Broglie in the quantum
theory of the photon being considered as a composite particle. In his first paper
on the subject (de Broglie, 1934b), the idea of a fusion of Dirac particles was
the starting point of his theory of particles of higher spin. A second point is
that, unlike others, de Broglie’s initial aim was not a generalization of Dirac’s
equation, but a theory of light. This is why he did not introduce any electro-
magnetic interaction.

For these reasons, he was the only one to suppose a massive photon,
unlike others who considered a massless photon as obvious. He never tried
to extend his theory to massless particles and even scarcely alluded to this
possibillity.

6.5.3 The “Proca Equation”
Eq. (6.21) and the very idea of a massive photon are often ascribed to Alex-
andru Proca. Actually, it is the result of a misunderstanding, if not a “mis-
reading”, as follows:
1. The “Proca equations” (Proca, 1936) appeared in 1936, two years after

the Broglie equations (de Broglie, 1934b). Moreover, the paper of Proca
was entitled: “On the ondulatory theory of positive and negative elec-
trons”. It was not a theory of the photon, but a theory of the electron:
an attempt to avoid negative energies, as was frequent in that time.22

22 Heisenberg and de Broglie were among the few who immediately adopted Dirac’s equation,
whatever the difficulties with negative energies were.
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2. Rejecting spinorial wave functions, Proca suggestsdfor the electronda
vectorial equation deriving from the Lagrangian:

L ¼ Z2c2

2
B*
rsBrs þ m2

0c
4j*

r jr

Brs ¼ ðvr $ iArÞjs $ ðvs $ iAsÞjr ðr; s ¼ 1; 2; 3; 4Þ:
(6.121)

The complex vectorial function jr of the electron takes the place of de
Broglie’s photon potential ðA;V Þ; and Ar is a real potential of an external
electromagnetic field acting on the electron jr , and the electrondnot the
photondwas the object of the theory. From Eq. (6.121), Proca derived
the following equations:

ðvr $ iArÞBrs ¼ k2js; ðvr þ iArÞB*
rs ¼ k2j*

s

$
k ¼ m0

Zc

%
; (6.122)

and he remarked that “they have the form of Maxwell’s equations [.],
completed by an external potential (Ar )”. But, in no way did he consider
Eq. (6.122) as the equations of a photon.

Then, he gave a spin operator, but without calculating its eigenvalues
and thus ignored the fact that his electron had a spin 1. This is astonishing
because de Broglie worked one floor above Proca and had deduced this
value 1 two years earlier in his equation of describing a massive photon
(de Broglie, 1934b).

6.5.4 The Bargmann-Wigner Equation
The Bargmann-Wigner equation for higher values of spin was published in
1948 (Bargmann & Wigner, 1948) and was similar to de Broglie’s equations
(de Broglie, 1943). Not identical, indeed, because it lacked the idea of fusion
and was restricted by an a priori condition of symmetry, so it had only half of
the de Broglie solutions.

When the general theory is applied to the case of spin 1, Bargmann and
Wigner found the equations identical with the equation taken from de Bro-
glie’s book p. 106 (de Broglie, 1943), with a difference: by virtue of their con-
dition of symmetry, Bargmann andWigner did not develop the wave on the
16 Clifford matrices, as we did in Eq. (6.19), but only on 10 of them:
gm;g½mn(. The 6 others were forgotten, so the spin 1 Maxwell equations
[Eq. (6.21)] were obtained, but not the non-Maxwellian ones [Eq. (6.22)],
corresponding to spin 0, which clearly have an important physical meaning.
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They would be unable to include the Aharonov-Bohm effect, as we did,
and a fortiori to find the magnetic photon, of which we proved not only that
it has a logical place in the theory, but that it was already hidden in de Bro-
glie’s theory and later experimentally observed. And it is the photon that
automatically appears in the interaction between the leptonic monopole
and the electromagnetic field.

CHAPTER 7

P, T, and C Symmetries, the Solutions with
Negative Energy, and the Representation of
Antiparticles in Spinor Equations

7.1 INTRODUCTION

In this chapter, we revisit the problem of P (Parity), T (Time), and C
(Charge) symmetries in quantum electrodynamics, starting with the laws of
Pierre Curie and classical electromagnetism rather than a priori postulating
the formal covariance of quantum mechanics. It is only after having dis-
cussed these symmetries that we will assess how quantum mechanics agrees
with them. In fact, it will turn out that the so-called Racah transformations
are confirmed for the P and C symmetries, but not for the T symmetry. It
thus evolves that there are two possible T transformations in the framework
of classical electromagnetism, one of which is subsequently selected on the
basis of a general physical argument and formal covariance. An examination
of (linear) spinor equations will then reveal a large difference between the
symmetries of an electric charge and those associated with a magnetic one.

It is an interesting historical point that Dirac, when first working on these
questions, believed that the negative energy solutions of the Klein-Gordon
equations stemmed from the fact that it is a second-order equation with
respect to the time variable. In spite of all that he was eventually able to
get from them, he was disappointed to find such solutions in his own first-
order equation, and indeed, until the end of his life, he went on looking
for an equation that would be free of such solutions. One may wonder
whether these come from the linearity of the equation, but that is definitely
not the case: negative energies, just as antiparticles are not associated with
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second derivatives or linearity, but rather with symmetries (i.e., relativistic
covariance and P, T, and C symmetries). Recall that in special relativity,
rotating bodies lead to negative energies [M€oller (1972)], whereas in general
relativity, Einstein showed, as early as 1925, that one cannot describe an
electron without the appearance of a particle of opposite charge. He con-
nected that property with time reversal and proved that the product PT
reverses charges (Lochak, 1994; Einstein, 1925).

So in this chapter, our first goal will be to clarify some points pertaining
to P, T, and C symmetries, using the work of Pierre Curie on the symme-
tries of the electromagnetic field, whose role cannot be overstated. We refrain
from speaking, as some do [e.g., Berestetsky, Lifschitz, & Pitaevsky (1968)],
of “charge conjugacy” about free-field equations because this leads to iden-
tifying the variance of the potentials with that of a world gradient (via gauge
invariance). However, we would like to show that this variance can be
inferred from the laws of electromagnetism. Most of this chapter is geared
toward linear quantum equations; however, in Chapter 4, we already
studied some nonlinear problems connected with chirality and the monop-
ole, and here, we will return briefly to the nonlinear setting, with questions
on the compatibility between nonlinearity and quantum mechanics. A more
general and detailed study of the symmetries in nonlinear field equations can
be found in Lochak (1997).

7.2 THE SPATIAL SYMMETRIES OF THE
ELECTROMAGNETIC QUANTITIES

Few treatises of electromagnetism mention the P, C, and T symme-
tries. Jackson (1975) is an exception, but only formally so, as he postulates
the invariance of the electric charge under space or time reversal23. We dis-
agree about the time symmetry and, as far as space is concerned, although
Jackson’s choice does agree with the results of Pierre Curie, the latter
does not impose them a priori, but rather deduces them from experimenta-
tion and his famous general symmetry law (Curie, 1894a,b):

“Lorsque certaines causes produisent certains effets, les éléments de symétrie
des causes doivent se retrouver dans les effets produits.” [When certain causes

23 Here is his only argument: “It is natural, convenient, and permissible to assume that charge is also a
scalar under spatial inversion and even under time reversal” (Jackson, 1975, p. 249).
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produce certain effects, the same patterns of symmetry should be found in the
effects as in their causes.]

Conversely,

“Lorsque certains effets rév"elent une certaine dissymétrie, cette dissymétrie
doit se retrouver dans les causes qui lui ont donné naissance.”24 [When certain
effects betray a certain asymmetry, the latter must be present in the causes from
which it originates.]

Here are two applications of these principles, following Curie himself:
1. The spatial symmetry of the electric field: Consider an electric field created

between two circular plates made of different metals and sharing a com-
mon axis. It displays the symmetries of the cause (i.e., of the set of the
two plates): Rotation around their axes and planar symmetry with
respect to any plane containing those axes, corresponding to the symme-
try of a truncated cone. But there could be more symmetrydnamely that
of a cylinder25 or a sphere. To decide this point, Curie imagines an elec-
trically conducting sphere immersed in a uniform electric field. Then “a
force will be exerted on the sphere along the direction of the field” and
the asymmetry of the effect should be retraced to its cause. But the force
(i.e., the effect) is not symmetric with respect to an axis orthogonal to its
direction; hence, the field-sphere system admits no such axis either. Now
the sphere does admit an infinity of axes of symmetry, which are
included if viewed in the field because it is a conductor; so the cause
of the asymmetry should lie in the field itself. The conclusion is that
the electric field exactly admits the symmetry of a cone and thus can be
represented as a polar vector of the space R3. The same holds true for an
electric current or an electric polarization.

2. The spatial symmetry of the magnetic field: Consider now the magnetic
field that is created at the center of a circular coil carrying an electric current.
The axis of the coil is an axis of isotropy and its plane a plane of symmetry. So
the magnetic field does possess a plane of symmetry normal to its direction.
On the other hand, there is no normal axis associated with a binary sym-
metry. Indeed, think of a rod moving normally along its length; it does
have a binary axis of symmetry spanned by the rod itself and the velocity

24 However the effects may well be more symmetric than their causes, as some causes for asymmetry
may not suffice to produce the expected effects.

25 Curie does not elaborate, but he writes ‘“truncated cone’” rather than “cone,” clearly because a
cylinder can be seen as a particular case of the former.
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vector. If one now creates a magnetic field normal to that plane, an elec-
tromotive force appears in the rod and the binary axis disappears. So it
must be absent from the cause and the magnetic field admits no axis nor-
mal to its direction. The conclusion is that the magnetic field has the symmetry
of a rotating cylinder and can be represented by an axial vector (in R3). The
same can be said of a magnetic current or a magnetic polarization.
From Curie’s reasonings about fields, one can deduce the symmetries of

the charges. He does not do this himself,26 but his reasoning can easily be
adapted. Let us take up the parallel circular plates introduced here; they
are swapped, as well as their charges, through a symmetry with respect to
a parallel and equidistant plane. Since we know that this operation reverses
the electric field, the signs of the charges do not change. For a magnetic
charge, one can draw the opposite conclusion since in that case, the field
is not reversed. In summary, parity reverses the sign of the magnetic charge
(g), but not that of the electric charge (e):

P : E/$E; H/H; e/e; g /$g: (7.1)

Wewill see in the upcoming discussion that although e is a scalar, E a polar
vector, andH an axial vector, it would be wrong to conclude that the charge g
is “pseudoscalar,” as is sometimes asserted. In fact, all physical constants are sca-
lars, no matter what physical quantities are characterized; no one would say
that Z is a component of an antisymmetric tensor because it is a unit of kinetic
momentum. In the sequel, everything pertaining to the electric charge will
remain as is, but we will have to modify our view of the magnetic charge
in light of the quantum expression of chirality.

7.3 THE TIME SYMMETRY OF THE ELECTROMAGNETIC
FIELD

Curie did not address the question of time reversal, which in those
days was not an issue. We will first invoke Lorentz’s force as exerted on
an electric or magnetic charge [Jackson (1975)]:

F �elec ¼ e
!
E þ 1

c
v"H

"
; Fmagn ¼ g

!
H$ 1

c
v" E

"
(7.2)

26 However, he does deal with magnetic charges in his second memoir (Curie, 1894a,b).
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Quantum mechanics, of course, should not contradict these formulas,
which indeed are recovered in the semiclassical limitdespecially since,
although they are not enough to fix the symmetries, they should be
coherent with them. Since F is T invariant (because F ¼ ma) and v
changes sign along with t, Eq. (7.2) forces the following transformation
laws:27

T : eE/eE; eH/$eH; gH/gH; gE/$gE: (7.3)

From there, one gets two possible sets of laws:

ðIÞ E/E;H/$H; e/e; g/$g
ðIIÞ E/$E;H/H; e/$e; g/g:

(7.4)

Hence, there is an ambiguity which is enough to lift for one of these
quantities since the others would follow, but that seems difficult (if not
impossible) with the help of electromagnetic phenomena alone. All the
ones that I have tried, whether classical or quantum, may accommodate
both transformation laws. This difficulty is akin to the one that Curie him-
self encountered concerning spatial symmetry. In his words, “Les
phénom"enes généraux de l’électricité et du magnétisme nous indiquent seulement
une liaison entre les symétries du champ électrique et du champ magnétique [...]”
[The general electric and magnetic phenomena tell us only about a connec-
tion between the symmetries of the electric field and those of the magnetic
field.]

In fact, these phenomena only showed him that one of the fields is
polar and the other axial, but without specifying which is which. And
he continues: “Pour lever cette indétermination il faut faire intervenir d’autres
phénom"enes, les phénom"enes electrochimiques ou d’electricite de contact, les
phénom"enes pyro ou piézoélectriques, ou encore le phénom"ene de Hall, ou celui de
la polarisation rotatoire magnétique.” [In order to remove this indeterminacy,
one needs to bring into play other types of phenomena, such as electro-
chemical phenomena or those involving contact electricity, or pyro or pie-
zoelectric ones, or the Hall phenomenon or still rotating magnetic
polarization.]

In our case, too, the general electromagnetic phenomena specify
only the behavior of the three remaining quantities in Eq. (7.4), provided

27 Note that following Eq. (7.2), one can also write P : eE/eeE; eH/ eH; gH/egH; gE/ gE,
and by Curie’s laws for fields, one recovers Eq. (7.1) for the charges.
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that one of them is known28. We will now follow the route suggested by
Curie.

Consider an electrochemical phenomenon (e.g., cations flowing toward
an anode with a density of current j ¼ rv, where r denotes the density of
cations and v their velocity). Let us perform a time reversal; we do not
know a priori whether the sign of the charges will be reversed or not, but
in either case, the signs of the ions and that of the electrode will remain
opposite, so the direction of the current will remain unaffected. But since
the velocity v is reversed, the charge must change sign too: so it is the second
possibility in Eq. (7.4)dnamely, (II)dthat is the correct one. This result is
confirmed by the reasoning of Einstein (Einstein, 1925) and based on rela-
tivistic covariance. Indeed, relativity combines the two fields E and H into
an antisymmetric tensor Fmv:

E ¼ fiFk4g;H ¼ fFklg
&
xm ¼ xk; ict

'
: (7.5)

From Eq. (7.5), Einstein concludes that the electric field, regarded as the
time component of the tensor, changes sign under P and T, as does the
charge density since it occurs as the divergence of the field.

When Pierre Curie investigated the symmetries of the electric field, he
assumed that the charged circular plates that he considered admit an infin-
ite number of planes of symmetry through their common axis. He thereby
implicitly assumed the P invariance of the electric charge, which he had not
yet demonstrated. However, he did so in the sequel, using pyroelectricity
and piezoelectricity. On the other hand, he never took up the hint that
he gave about electrochemical phenomena, but one may imagine that he
had in mind a line of reasoning similar to the one given here. Consider,
in fact, two electrodes, anode and cathode, toward which two currents, cat-
ionic and anodic, are flowing. Let us perform a symmetry that permutes the
electrodes. Whether the signs of the electrodes are permuted or not, those
of the ions will also permute the electrodes, and they will thus aim for the
same electrode. But since these have been permuted, the ionic currents
must be reversed, as do the velocities, by parity. The conclusion is that
the electric charge is unchanged (i.e., it is P invariant).

28 This is probably the reason why Jackson admits that this choice is purely conventional.
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7.4 P, T, AND C VARIANCE OF THE ELECTROMAGNETIC
FIELD

This analysis must be supplemented by the effect of charge conjugacy,
which offers no problem in classical physics: If one reverses the sign of a
charge on which a force is applied, the external fields are left invariant and
the sign of the force [as in Eq. (7.2)] is reversed:

C : E/E;H/H; e/$e; g/$g (7.6)

However, we should keep in mind that the situation will be different for
fields that are emitted by a given charge. Following Eqs. (7.1), (7.4), and (7.6),
we can write the transformation laws as

8
<

:

P : E$ E;H/H; e/e; g/$g
T : E/$E;H/H; e/$e; g/g
C : E/E;H/H; e/$e; g/$g

: (7.7)

7.5 TRANSFORMING THE POTENTIALS

The P, T, and C transformation laws for the potentials are obtained
from the actual definitions of the fields. We will simultaneously introduce
the Lorentz potentials V andA and the pseudopotentialsW and B associated
with the magnetic monopole (Lochak, 1995a,b); note, however, that B has
nothing to do with induction), as follows:

E ¼ $VV $ 1
c
vA
vt

;H ¼ curl A and (7.8)

E ¼ curl B;H ¼ VW þ 1
c
vB
vt

: (7.9)

Following Eq. (7.7), one finds the following transformation laws for the
potentials, which are to be satisfied by quantum equations:

8
<

:

P : A/$A;V/V;B/B;W/$W; e/e; g/$g
T : A/A;V/$V; g/$B;W/W; e/$e; g/g
C : A/A;V/V;B/B;W/W; e/$e; g/$g

: (7.10)

Lorentz transformations combine the potentials (V, A) and (W, B) into
two 4-vectors:

Am ¼ ðA; iV Þ; iBm ¼
&
B; iW

'
: (7.11)
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According to Eq. (7.7), Am is a polar vector, whereas Bm is an axial vector
in space-time. In Euclidean space R3, A is a polar vector and V is a scalar
vector, whereas B is an axial vector and W is a pseudoscalar vector29. These
are the transformation laws that are generally agreed upon. One can check
that they fit well with other results, but note that they do not discriminate
between the laws of type (I) and type (II) described previously. In particular,
note the following:
1. Eq. (7.10) yields the right transformation laws for Lagrangian momenta.

If P ¼ pþ e
cA;E ¼ mc2 þ eV ; or : P ¼ pþ g

c B;E ¼ mc2 þ gW , one
gets

ðP or TÞ : P/$P;E/$ E: (7.12)
2. Here is a second property from pure electromagnetism. Namely, Eqs.

(7.7) and (7.10), for the fields and potentials, respectively, ensure the
covariance of Maxwell equations and that of de Broglie’s equations for
the photon (de Broglie, 1940e1942, 1943), in which potentials and
fields appear on the same footing:

$1
c
vH
vt

¼ curl E;
1
c
vE
vt

¼ curl Hþ k20A

div H ¼ 0; div E ¼ $k20V

H ¼ curl A; E ¼ $gradV $ 1
c
vA
vt

;
1
c
vV
vt

þ divA ¼ 0:

(7.13)

This also ensures the covariance of the equations for the “magnetic pho-
ton,” which involve pseudopotentials (Lochak, 1995a,b):

$1
c
vH
vt

¼ curl Eþ k20B;
1
c
vE
vt

¼ curl H

div H ¼ k20W ; div E ¼ 0

H ¼ gradW þ 1
c
vB
vt
; E ¼ curl B;

1
c
vW
vt

þ divB ¼ 0:

(7.14)

29 Recall that a polar vector in space-time has a spatial polar component and a time component that is P
invariant because that transformation acts only on the space part. On the other hand, T acts only on
the time component, as is visible from Eq. (7.10). The properties of an axial vector are the opposite
of that of a polar vector: see again Eq. (7.10). It may also be useful to recall that an axial vector in R3

is dual to a second-order antisymmetric tensor: Bi ¼ 1
2˛ijkC½jk(. In much the same way, an axial

vector in space-time is dual to an antisymmetric tensor of third order: Bm ¼ 1
6˛mabgC½abg(.
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7.6 P, T, AND C INVARIANCE IN THE DIRAC EQUATION

The Dirac equation in the presence of an electromagnetic field reads

gm

$
vm þ i

e
Zc

Am

%
jþ m0c

Z
j ¼ 0

&
xm ¼ xk; ict

'
(7.15)

where Am is the potential four-vector defined as in Eq. (5.4) in Chapter 5,
and one sets

gk ¼ i
!

0 sk
$sk 0

"
; k ¼ 1; 2; 3;g4 ¼

!
I 0
0 $I

"
;

g5 ¼ g1g2g3g4 ¼
!
0 I
I 0

"
:

(7.16)

Here, the sk’s are the Pauli matrices:

s1 ¼
!
0 1
1 0

"
; s2 ¼

!
0 $i
i 0

"
; s3 ¼

!
1 0
0 $1

"
; I ¼

!
0 1
1 0

"
:

(7.17)

In the sequel, one should keep in mind that the vector space components
and the pseudovector time components, as well as s1, s3, g2, g4, and g5, are
real, whereas the vector time components and the pseudovector space com-
ponents, as well as s2, g1, and g3, are purely imaginary.

We will use Weyl’s spinorial representation, which diagonalizes g5 and
displays the chiral two- components x and h:

j/Uj ¼
!
x
h

"
;U ¼ U$1 ¼ 1ffiffiffi

2
p ðg4þ g5Þ: (7.18)

In this representation, the Dirac equation becomes (as mentioned
already)

(
1
c
v

vt
$ s:V$ i

e
Zc

ðV þ s:AÞ
)
xþ i

m0c
Z

h ¼ 0

(
1
c
v

vt
þ s:V$ i

e
Zc

ðV$ s:AÞ
)
hþ i

m0c
Z

x ¼ 0:

(7.19)

Let us now write out the P, T, andC invariances of Eq. (7.15), using Eqs.
(7.7) and (7.10); the P and T invariances are expressed by the Racah formulas
[Racah (1937)]; note that the tilde indicates transposition:
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P : e/e; xk/$xk; x4/x4;Ak/$Ak;A4/A4;j/g4j

C : e/$ e;j/g2j
* ¼ g2g4

~j
&
j ¼ jþg4

'
:

(7.20)

However, the Racah formula for time reversal has to be rejected because
we now need to take into account the transformation formulas for the
potentials and charges, which leads to writing

T ðIIÞ
Racah : xk/xk; x4/$x4;Ak/Ak;A4/$A4

j/$ig1g2g3j; e/$e:
(7.21)

This is not the original Racah transformation, as the latter does not mod-
ify the sign of the charge; we have added a superscript (II) to make this clear.
In order to apply this transformation, one should first change in Eq. (7.15)
the signs of time, of the charge, and of A4, getting
n
g1v1 þ g2v2þ g3v3$ g4v4 $ i

e
Zc

ðg1A1þ g2A2 þ g3A3$ g4A4Þþ
m0c
Z

o
j ¼ 0:

(7.22)

Applying then the operator eig1g2g3, we find the Dirac equation again,
but with an opposite charge, so that Eq. (7.21) does not express any invar-
iance under time reversal. This is why we will look for an antiunitary solu-
tion by taking the complex conjugate of Eq. (7.22), namely
n
$g1v1 þ g2v2$ g3v3 þ g4v4$ i

e
Zc

ðg1A1$ g2A2 þ g3A3 $ g4A4Þ þ
m0c
Z

o
j* ¼ 0:

(7.23)

If we now apply the matrixeig3g1, which reverses g1 and g3 while leav-
ing g2 and g4 invariant, we retrieve Eq. (7.15) with the correct sign (i.e., a
plus sign) in front of the charge. The dual matrix, eig4g2 ¼ eig5g3g1,
would result in the same signs in front of the matrices g1,g2,g3,g4, but
the sign of the mass would be reversed. Thus, the matrix eig3g1 is the
only possibility, whence the transformation laws for time reversal are as
follows:

T : e/$e; xk/xk; x4/x4;
Ak/Ak;A4/$A4;j/$ig3g1j

*:
(7.24)

This leads to the following P, T, and C transformations associated with
the Dirac equation:
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8
>>>><

>>>>:

P : e/e; xk/$xk; x4/x4;
Ak/$Ak;A4/A4;j/g4j
T : e/$e; xk/xk; x4/$x4;
Ak/Ak;A4/$A4;j/$ig3g1j

*

C : e/$e;j/g2j
* ¼ g2g4

~j
&
j ¼ jþ g4

'
:

(7.25)

These transformation laws conform to the Curie laws for electromagnet-
ism, supplemented by those for charge and time reversal that we have added.
They also comply with the objections which Costa de Beauregard raised
concerning the Racah transformation, invoking relativity (Costa de Beaure-
gard, 1983). The laws given here seem clearer, and especially better-
grounded, than those of Jauch and Rohrlich (1955), with whom one would
also disagree somewhat. The transformation of the wave function under the
T transformation [see Eqs. (7.24) and (7.25)] coincides with those in Lochak,
where it appears without the charge component because the reasoning there
does not take interactions into account. In fact, the T transformation pro-
posed here is sometimes called weak time reversal [Sokolov and Ternov
(1974)], defined as the product of charge reversal by time reversal "a la Racah.
For us, however, Eq. (6.10) will feature pure time reversal T, and we will
consider the original Racah transformation as representing the product
TC as follows:

TRacah ¼ TC; (7.26)

where TRacah now leaves the charge invariant:

TRacah : e/e; xk/xk; x4/$x4;
Ak/Ak;A4/$A4;j/$ig1g2g3j:

(7.27)

This transformation expresses a law of invariance as a product of two
such. How should we interpret it? We now have two time-reversal opera-
tions [namely, T, as in Eq. (7.24), and TRacah], and two operations that
reverse the charge (namely, T and C), but with different meanings because
C associates with a negative energy solution of Eq. (7.15) a positive energy
solution of that same equation with the opposite charge of that of the elec-
tron. Consider, indeed, a solution with negative energy, as displayed by the
minus sign in the exponential (u > 0):

j ¼ e$iutf
&
r
'
: (7.28)
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The charge reversal transformation C associates with that solution one
with positive energy:

j0 ¼ g2j
* ¼ eiutg2f

*&r
'
; (7.29)

where the plus sign comes from complex conjugacy. Now, start instead
from a solution with positive energy (again u > 0):

j ¼ eiutf
&
r
'

(7.30)

and apply the T transformation of Eq. (7.24) or (7.25). Doing this will
reverse both the sign of time and of the charge, and we get a solution with
opposite charge but positive energy. The inversion of the sign in the
exponential due to complex conjugacy is compensated for by time reversal:

j00 ¼ $ig3g1j
*ð$t; rÞ ¼ $ieð$iÞuð$tÞg3g1f

*ðrÞ ¼ $ieiutg3g1f
*ðrÞ:
(7.31)

Time reversal associates with an electron with positive energy a positron
with an equally positive energy: the positron can be thought of as an elec-
tron going back in time, as Richard Feynman liked to put it. This would not
have been the case had we adopted the first transformation law (I) in Eq.
(7.4). Let us now apply the Racah transformation to the positive energy sol-
ution in Eq. (7.30):

j
000
¼ TRacahj ¼ TCj ¼ $ig1g2g3jð$t; rÞ ¼ $ie$iutg1g2g3fðrÞ:

(7.31)

We find again a solution going backward in time, but this is obtained via
the product of time reversal [in the sense of Eq. (7.25)] and charge conju-
gacy, producing a minus sign in the exponential.

Finally, we can transcribe [Eq. (7.25)] in the Weyl representation [Eq.
(7.18)]:

P : e/e; x/$x; t/t;
A/$A;V/V ; x/h
T : e/$ e; x/x; t/$t;A/A;V/$V ;
x/s2x*; h/s2h*

C : e/$e; x/$is2n*; h/is2x*:

(7.32)

It can be seen here, and it will appear more clearly later in this chapter in
the case of magnetism that x and h are the chiral components of the Dirac wave
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function; they are permuted under parity (P) and charge conjugacy (C) but
not under time reversal (T).

7.7 P, T, AND C INVARIANCE IN THE MONOPOLE
EQUATION

Let uswrite down the linear equation for amagneticmonopole30(Lochak,
1983, 1984, 1985, 1987a,b, 1995a,b):

gm

&
vm$ gg5Bm

'
j ¼ 0: (7.33)

The equation being massless ensures its invariance with respect to the
chiral gauge transformation:

j/expðig5q=2Þj;Bm/Bm þ vmq: (7.34)

We have seen in Eq. (7.11) that Bm combines the pseudopotentials W
and B and these appear in the Weyl representation of Eq. (7.33), to wit:

(
1
c
v

vt
$ s:V$ i

g
hc
ðW þ s:BÞ

)
x ¼ 0

(
1
c
v

vt
þ s:V$ i

g
hc
ðW$ s:BÞ

)
h ¼ 0:

(7.35)

This equation best displays the meaning of the Weyl representation.
Indeed, comparing Eqs. (7.15) and (7.33) on the one hand with Eqs.
(7.19) and (7.35) on the other makes quite clear the essential difference
between an electric and a magnetic charge. In the Dirac equation [Eq.
(7.15)], the charge operator is E ¼ eI (I denotes the identity matrix) with
just one eigenvalue, whereas in the monopole equation [Eq. (7.33)], the
operator reads B ¼ gg5 with eigenvalues g and eg, which appear explicitly
in Eq. (7.35). In fact, the main property of the Weyl representation is that it
diagonalizes the charge operator B and thus separates the chiral components
x and h:

UBU$1 ¼ gUg5U
$1 ¼ gg4 ¼ g

!
I 0
0 $I

"
: (7.36)

As was already mentioned in x2, the pseudoscalar character of the oper-
ator B is not to be ascribed to the charge constant g but to the operator g5.

30 There is no factor i in front of the charge because Bm is a pseudovector; see Eq. (7.11).

Theory of the Leptonic Monopole 139



That can only be understood in quantum mechanics and is simply ignored
by its classical counterpart. In fact, chirality is related to the polarization of the
wave; the wave itself disappears in classical mechanics and its trace is reduced
to a phase in the action integral.

The chiral components x and h corresponding to the two eigenvalues of
B satisfies the two independent equations [Eq. (7.35)], in contrast with Eq.
(7.19) for an electron, which is coupled via the mass term. The magnetic
charge g occurs with opposite signs in the two equations [Eq. (7.35)] (these
are the eigenvalues of the charge operator B ¼ gg5), whereas the electric
charge e enters with the same sign in both equations [Eq. (7.19)] (operator
E ¼ eI)dan essential difference between magnetism and electricity.

This entails that, at variance with what happens in classical physics, a
change of sign of the magnetic charge may a priori have two different mean-
ings in quantum mechanics:
1. It can denote a transition between two monopoles with opposite signs of

their charge constants, in analogy with a transition between an electron
and a positron.

2. At the same time, it can describe a transition between the two chiral
components of the same monopole, with a given charge constant, but
opposite eigenvalues of the charge operator B.
Therefore, at least in principle, we are confronted with four cases (see the

first reference in Lochak, 1985):

mþ: left monopole ðx$ componentÞ charge g > 0
m þ: right antimonopole ðh$ componentÞ charge g > 0
m$: left monopole ðx$ componentÞ charge g < 0
m$: right antimonopole ðh$ componentÞ charge g < 0:

(7.37)

Let us express the P invariance, which is explicit in Eq. (7.33), changing
the signs of the components of Bm according to Eq. (7.10) but leaving the
charge constant fixed g [contrary to the prescription of Eq. (7.10)dwe
will see why in a moment]:
n
$g1v1$ g2v2 $ g3v3 þ g4v4$

g
Zc

ðg1B1þ g2B2 þ g3B3$ g4B4Þg5

o
j ¼ 0:

(7.38)

Since dm and Bm transform in opposite ways and the matrices g4 and g5
anticommute, Eq. (7.38) is equivalent to Eq. (7.33) up to global multiplica-
tion by g4. We get the following explicit form of the P invariance for
Eq. (7.33):
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P : g/g; xk/$xk; x4/x4;
Bk/Bk;W/$W ;j/g4j;

(7.39)

where the magnetic charge constant is invariant which looks as if it con-
tradicts (7.10) but this is deceptive. In fact, starting from the Weyl repre-
sentation, Eqs. (7.35) and (7.39) can be rewritten as

P : g/g; xk/$xk; x4/x4;
Bk/Bk;B4/$B4; x4h:

(7.40)

This makes it plain that whereas the charge constant is invariant, the par-
ity operator swaps the chiral components x and h, hence the eigenvalues)g
of the charge operator B. It thus changes the sign of the charge of the
monopole, as predicted in Eq. (7.10), although this is effected not via chang-
ing the sign of the charge constant but rather a change of chirality, in con-
formity with Curie’s memoir (see x7.2). Following the terminology in Eq.
(7.37), we will get, according to the sign of g (for a priori, both valuesþg and
eg could exist in nature):

P : mþ4mþ or m$4m$: (7.41)

Let us now take a look at the charge conjugation operator C. To this
end, we take the complex conjugate of Eq. (7.33), keeping Eqs. (7.11)
and (7.16) in mind:
n
$g1v1 þ g2v2 $ g3v3 $ g4v4 $

g
Zc

ðg1B1$ g2B2 þ g3B3 þ g4B4Þg5
o
j* ¼ 0:

(7.42)

Multiplying by g2, we fall back onto Eq. (7.33), which is thus invariant
under C, but again without changing the sign of the constant g:

C : g/g;j/g2j
* ¼ g2g4

~j
&
j ¼ jþg4

'
: (7.44)

Here again, this may seem to contradict Eq. (7.10) but using the Weyl
representation, Eq. (7.43) reads

C : g/g; x/$is2h*;h/$is2x*: (7.44)

In other words, charge conjugacy leaves Eq. (7.33) invariant, as well as
the equivalent system of equations [Eq. (7.35)] without changing the sign
of the constant g; but inside Eq. (7.35), it leads to permuting the chiral com-
ponents; that is, the left and right monopoles with respective eigenvalues)g
of the charge operator. The charge changes sign much as in Eq. (7.41):
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C : mþ4mþ or m$4m$: (7.45)

Finally we come to the time reversal transformation T, by introducing
Eq. (7.10) into Eq. (7.33):
n
g1v1 þ g2v2 þ g3v3 $ g4v4 $

g
Zc

ð$g1B1 $ g2B2 $ g3B3 þ g4B4Þg5
o
j ¼ 0:

(7.46)

Apply -ig1g2g3i, which commutes with g1,g2,g3, and anticommutes
with g4 et g5 to retrieve Eq. (7.33) again and a Racah transformation, which
looks compatible with Eq. (7.10):

TRacah : g/g; xk/xk; x4/$x4;
Bk/$Bk;B4/B4;j/$ig1g2g3j:

(7.47)

We check what happens to the chiral components by transcribing Eq.
(7.47) in the Weyl representation:

TRacah : g/g; xk/xk; x4/$x4;
Bk/$Bk;B4/B4
x/$ih; h/ix:

(7.48)

One finds that the charge constant is left invariant but that again chirality
is not, permuting the x and h components, hence the charge of the monop-
ole, which violates Eq. (7.10), which we took as our starting point. So that
Racah transformation is not admissible for representing time reversal for a
magnetic charge. This conclusion contradicts my own previous papers on
the subject, where I had overlooked (and so apparently did everyone else)
the P, T, and C transformation laws for electromagnetic quantities, as
embodied by Eq. (7.10). On the other hand, the unitary transform of x7.6
still holds true here. Indeed, consider the complex conjugate of Eq.
(7.46), taking Eq. (7.10) into account:
n
$g1v1 þ g2v2 þ g3v3 $ g4v4 þ

g
Zc

ðg1B1$ g2B2 þ g3B3 $ g4B4Þg5
o
j* ¼ 0:

(7.49)

Multiplying by$ig3g1 changes the sign of g1 and g3, leaving g2, g4, and
g5 invariant and it takes us back to Eq. (7.33), leading to the following trans-
formation law:

T : g/g; xk/xk; x4/$x4;
Bk/$Bk;B4/B4;j/$ig1g2g3j

*;
(7 50)
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but now in the Weyl representation, we find:

T : g/g; xk/xk; t/$t;
Bk/$Bk;W/W ;
x/$s2x*; h/s2h*;

(7.51)

which makes it clear that, at variance with the Racah transformation [Eq.
(7.48)], the chiral components are not permuted and the magnetic charge
stays invariant, in conformity with our starting point [Eq. (7.10)]. Sum-
marizing, and in parallel with the transformation laws [Eq. (7.25)] for the
electron, we arrive at the following table for the monopole:

P : g/g; xk/$xk; x4/x4;
Bk/Bk;B4/$B4;j/g4j
T : g/g; xk/xk; x4/$x4;
Bk/Bk;B4/B4;j/$ig3g1j

*

C : g/g;j/g2j
* ¼ g2g4

~j
&
j ¼ jþg4

'
;

(7.52)

which can be rewritten in the Weyl representation as

P : g/g; xk/$xk; t/t;
Bk/Bk;W/$W ; x4h
T : g/g; xk/xk; t/$ t;
Bk/$Bk;W/W ; x/s2x*;h/s2h*

C : g/g; x/$is2h*; h/is2x*:

(7.53)

As was mentioned in x7.6 already, chirality is seen much more clearly
with magnetism than it is with electricity. The system [Eq. (7.35)] is made
of two independent equations for x and h, respectively, and formulas [Eq.
(7.53)] show that they are exchanged under parity and under charge conju-
gacy. There are two monopoles, left and right, which form a particle-antipar-
ticle pair. Eq. (7.35) also displays the neutrino as a particular case or,
conversely, suggests that monopoles can be considered as “magnetically
excited” neutrinos. This leads to a question that we have raised previously:
Could it be that such monopoles are produced in weak interactions, in which
case the fact that they interact strongly with matter, in contrast with neutri-
nos, could explain the deficit of solar neutrinos in terrestrial observations?

Let us stress one more time that in Eq. (7.53), the P and C transforma-
tions leave the magnetic charge constant invariant,which does not contradict
Eq. (7.10) because the charge of a monopole changes via its chirality. Chirality
remains invariant under time reversal, and thereby so does the magnetic
charge, contrary to what happens with the electric charge. In a figurative
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way, and in sharp contrast with the case of the electron, one can say that an
antimonopole is not a monopole going back in time, but rather its mirror image. It thus
seems that one should consider a monopole with a charge constanteg not as
the antiparticle partner of one of charge þg, but rather as another particle
altogether.

7.8 P, T, AND C TRANSFORMATION LAWS FOR
TENSOR QUANTITIES

Consider the 16 tensor quantities associated with the Dirac equation:

u1 ¼ jj; Jm ¼ ijgmj;Mmv ¼ $ijgmgvj;
Sm ¼ $ijgmg5j;u2 ¼ $ijg5j;

(7.54)

or in the Weyl representation:

u1 ¼ xþhþ hþx;u2 ¼ i
&
xþh$ hþx

'

u2
1 þ u2

2 ¼ 4
&
xþh

'&
hþx

'

Jm ¼
*
J4; Jg ¼

*
i
&
xþxþ hþh

'
;$

&
xþsx$ hþsh

'

Sm ¼ fS4;Sg ¼
*
i
&
xþx$ hþh

'
;$

&
xþsxþ hþsh

'+

Mmv ¼
*
Mj4;Mjk

+
¼

*
xþsh$ hþsx

'
;
&
xþshþ hþsx

'+
:

(7.55)

We know that u1 and u2 are Lorentz invariants, Jm and Sm are vectors,
and Mmv is an antisymmetric tensor. Their behaviors under P, T, and C
are displayed in Table 7.1, together with that of the chiral currents (Lochak,
1959, 1983), which are consequences of Eq. (7.55):

Xm ¼
*
ixþx;$xþsx

+
;Ym ¼

*
ihþh; hþsh

+
: (7.56)

From Eq. (7.55), it is plain that

Jm ¼ Xm þ Ym;Sm ¼ Xm $ Ym: (7.57)

Now there is a table of the P, T, and C transformation laws as derived
from Eqs. (7.25), (7.32), (7.52), and (7.53), and in accordance with (II) in
Eq. (7.4):

Let us now introduce the physical dimensions of these quantities, taking
into account the P, T, and C transformation rules for the charges. We
denote by P ¼ $ eZ

2m0c
M4k and M ¼ $ eZ

2m0c
Mkl the electric and magnetic

polarizations of the electron, respectively. The transformation rules for the
electric charge are taken from Eq. (7.10), but those for the magnetic charge
have been modified according to quantum mechanics, as in Eqs. (7.52) and
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(7.53). The sign changes do not come from the constant g, but from the
changes of chirality.

We will now give the transformation laws for the fields and the poten-
tials, but at variance with Eqs. (7.7) and (7.10), the fields are not external
anymore; rather, they are caused by the currents. The P and T rules are iden-
tical, but this is not so for C. In order to check the rules for parity and time
reversal, it is enough to check that the rules previously noted for the fields
are in accordance with those for the currents. But for charge conjugacy,
the currents (i.e., the cause) determine the rule for the fields (i.e., the effect)
via the covariance that Curie’s laws imply for Maxwell equations (as dis-
cussed earlier in this chapter); we thus add the subscript em (meaning “emit-
ted”) to the fields in the table:

Am ¼ 4p
c
eJm;Bm ¼ 4p

c
gSm; (7.58)

or, more explicitly:

V ¼ 4p
c
eJ4;Am ¼ 4p

c
J;

W ¼ 4p
c
gS4;B ¼ 4p

c
gS:

(7.59)

Table 7.1
P T C

j / g4j eig3g1j* g2j
*

x / h s2x* eis2h*

h / x s2h* is2h*

u1 / u1 u1 eu1
J4 / J4 J4 J4
Jk / eJk eJk Jk
M4k / eM4k M4k M4k
Mjk / Mjk eMjk MjkP

4 / e
P

4
P

4 e
P

4P
k /

P
k e

P
k e

P
k

u2 / eu2 eu2 eu2
xþx / hþh xþx hþh
xþskx / hþskh exþskx ehþskh
hþh / xþx hþh xþx
hþskh / xþskx ehþskh exþskx

Theory of the Leptonic Monopole 145



So here is the revised version of the table, given as Table 7.2:

By using this table, one can check easily the covariance of the polariza-
tions and fields, as well as that of the currents and potentials; it makes plain
that the correct transformation rules hold true for the quantities with physi-
cally meaningful coefficients. Notice also that the T invariance of eJ in Table
7.2, which results from Eq. (7.24) goes along with the discussion in x7.3
leading to the choice of the second possibility (II) in Eq. (7.4).

Finally, Table 7.1 provides a new argument in favor of the T transforma-
tion and against the original Racah transformation. Indeed, one finds from
the table that the first invariant u1 is a true invariant in space-time, being
both P and T invariant, whereas u2 appears as a pseudoinvariant, changing
sign under P and T. The T invariance of u1 is especially important, as it
ensures the invariance of the Dirac Lagrangian equation:

L ¼ Zc
.
jgm

!
1
2

,
vm
-
þ i

e
Zc

Am

"
jþ m0c

Z
jj

/

*,
vm
-
¼

&
vm/

'
$
&
)vm

'+
;

(7.60)

and thereby the T invariance of the energy density:

E ¼ vL

v
$
vj
vt

%
!
vj

vt

"
þ
!
vj

vt

"
vL

v
$
vj
vt

%$ L: (7.61)

Table 7.2
P T C

e / e ee ee
g / g g g
eJ4 / eJ4 eeJ4 eeJ4
eJ / eeJ eJ eeJ
P / eP eP eP
M / M M eM
g
P

4 / eg
P

4 g
P

4 eg
P

4
g
P

/ g
P

eg
P

eg
P

E / eE eE eE(em)
H / H H eH(em)
V / V eV eV(em)
A / eA A eA(em)
W / eW W W(em)
B / B eB B(em)

146 Georges Lochak



By contrast, using the Racah version of the T transformation, we would
get

TRacah : u1/$u1 hence : E/$E; (7.62)

and this property suffices to rule out this transformation law; indeed, recall
that an energy density appears as the T44-component of the energy-
momentum tensor and varies as the square of the time variable, which
immediately entails its T invariance.

7.9 NONLINEARITY AND QUANTUM MECHANICS: ARE
THEY COMPATIBLE?

We start from a question that seems to be simple enough: What are
the main features of the Dirac equation that ensure that it complies with
the general principles of quantum mechanics, and in particular, produces
the correct semiclassical approximation? Recall the original Dirac equation
[Eq. (7.15)] and its Weyl representation [Eq. (7.19)], which diagonalize the
matrix g5, displaying the chiral components. In order to derive Planck’s law
from the Dirac equation, it is best to write the corresponding Lagrangian
equation as follows:
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(7.63)

with k0 ¼ moc
Z . This determines in turn the energy-momentum tensor, and

thus the following energy density:

E ¼ vL
vðvtjÞ
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&
vtj

' vL
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&
vtj
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þ'þ
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þ' vL
vðvthþÞ

$ L:

(7.64)

Since the equations of the motion imply that L vanishes (a point to
which we will return later in this discussion), this density can be rewritten as
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(7.65)

Consider a stationary wave

j ¼ eiutf
&
r
'
; (7.66)

with energy density

E ¼ fþf Zu ¼
&
xþxþ hþh

'
Zu: (7.67)

Assuming that the wave function is normalized, we find after integrating
over the whole space,

E ¼ Zu; (7.68)

confirming that Planck’s laws follow from the Dirac equation. Let us now
compute the plane waves in the Weyl representation [Eq. (7.19)] with no
external field; to this end, set

x ¼ aeiðut$k:rÞ; h ¼ beiðut$k:rÞ; (7.69)

in which u, k, a, and b are constants (a and b being spinors). We then get
$u
c
þ s:k

%
aþ k0b ¼ 0

$u
c
$ s:k

%
aþ k0b ¼ 0:

(7.70)

Setting the determinant equal to 0 yields the dispersion relation in the
following form:

$u
c

%2
¼ k2 þ k20; u ¼ 2pv; k ¼

!
2p
l

"
n; (7.71)

with frequency v and wavelength l (with n as a unit vector). Multiplying the
phase in Eq. (7.69) by Planck’s constant and using Eq. (7.68), we find

Zut $ Zk:r ¼ Et $
!
h
l

"
n:r: (7.72)

However, by definition, plane waves belong to the domain of geomet-
rical optics, and the connection with quantum mechanics is effected by
identifying this phase with the action integral of Hamiltonian classical
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mechanics. In other words, h#k represents a Lagrange momentum p, which
immediately yields de Broglie’s wavelength formula:

l ¼ h
p
: (7.73)

This formula is thus included, along with Planck’s law, in the Dirac
equation. Finally, let us multiply the dispersion relation [Eq. (7.71)] by h#

2,
taking Eq. (7.73) into account. We retrieve the expression of the energy
E, whence come the Hamilton-Jacobi equation and the semiclassical
approximation, expressing E and p as the space-time gradient of the action:

!
E
c

"2

¼ p2 þ m2
0c
2: (7.74)

At this point, these results depend heavily on the linearity of the Dirac
equation. In particular, in order to get Planck’s law, we used the vanishing
of the Lagrangian expression in Eq. (7.64), which is a consequence of line-
arity; or, equivalently, that this Lagrangian is quadratic. Besides, one then
needs to integrate Eq. (7.71) over space, which requires the wave function
to be normalizeddanother consequence of linearity.

One could be led to think that linearity is not really necessary and that
one could accommodate a first-degree homogeneous equation, which
makes it possible to normalize the wave function and entails the vanishing
of the Lagrangian along any solution. However, this is not sufficient to
recover de Broglie’s wavelength formula. Indeed, to make sense of Eq.
(7.73) and recover the Hamilton-Jacobi equation, it is first necessary that
Eq. (7.71) give the general dispersion relation and that it be identified (to
within a term of order h2) with the expression [Eq. (7.74)] of the energy.
But Eq. (7.74) is imposed by relativistic considerations, and Eq. (7.71) agrees
with it for the Dirac equation because iterating the latter leads to the Klein-
Gordon equation, which was built out of Eq. (7.74). Note that this is not a
fortuitous coincidencedrather, it was built in from the very beginning. It is
thus clear that this will not occur for a nonlinear equation, if only because
the dispersion relation will be different: it may happen that some solutions
are admissible in the semiclassical approximation, but that will almost never
be the case for the general solution.

Besides, being in accordance with quantum mechanics requires more
than Planck’s law and de Broglie’s formula. One still needs the so-called
superposition principle, which by definition will not hold true in the
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nonlinear case, except asymptotically in regions with vanishingly small wave
function and a weak nonlinearity. This is what de Broglie was counting on
in his theory of what he called “onde "a bosse” (one-bump wave), whose goal
was to describe the link between the wave and the particle by representing
the latter as an intense region of the wave.

We are thus led to the conclusion that in general, when looking for non-
linear wave equations, one is drifting away from quantum mechanics, even
in the semiclassical approximation. It thus seems naive to look for a nonlin-
ear version of quantum mechanics that could replace and improve the one
we are used to. Nonlinear equations tell another story altogether, and their
connection with quantum or even classical mechanics can be at best asymp-
totic. The search for such equations can thus be meaningful only inasmuch
as one is determined to make a foray into unchartered territories where
quantum mechanics itself does not venture, such as the structure of par-
ticles, the connection between waves and particles, the description of quan-
tum transitions, etc.

7.10 NONLINEAR SPINORIAL EQUATIONS AND THEIR
SYMMETRIES

Now we are going to partially extend to nonlinear equations the
results of this chapter thus far, confining our attention to relativistic Lagran-
gian equations in which only the mass term is nonlinear while a linear differ-
ential part is retained. We start with the general form of the Lagrangian
equation in the electric case:

Le ¼ LD þ ZcFðu1;u1Þ

¼ Zc
.
jgm
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e
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(7.75)

in which LD is the differential part of Dirac’s Lagrangian and F(w1,W2) is an
as-yet-arbitrary function, with dimension L$1 being the inverse of a length.
We insist that this nonlinear term is the most general one possible and that it
subsumes all terms of the following form:

FðJmJmÞ; F
$X

m

X

m

%
; F

&
Mmv ~Mmv

'
; F

$
Jm
X

v
Mmv

%
etc: (7.76)

We now define chiral invariance via the magnetic gauge transform, which
we have already discussed at length, namely
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j/eig5q=2j ðq ¼ Const:Þ: (7.77)

Now recall the Weyl transform diagonalizing the matrix g5 and splitting
Eq. (7.77) into two transformations that exchanged the chiral components
(x, h) of j:

x/eiq=2x; h/e$iq=2h: (7.78)

Performing this transformation leaves the tensor quantities Xm, Ym, Jm,
and

P
m invariant since they do not contain mixed x-h terms. But the ui’s

(i ¼ 1, 2) do, and that gauge transformation indeed induces a rotation of
the (u1, u2)-plane by an angle q. Namely, we have (Lochak, 1983):

!
u0

1
u0

2

"
¼

!
cos q $sin q
sin q cos q

"!
u1
u2

"
: (7.79)

This plane is chiral because whereas u1 is a relativistic invariant, u2 is
pseudo-invariant such that the sense of rotation changes with parity, and
q is also a pseudo-invariant, in contrast with the phase angle of the electron.
This is a fundamental difference between electricity and magnetism, with
which Maxwell and Pierre Curie were fully familiar in the framework of
classical physics.

Define the polar coordinates as r and the angle A (not to be confused, of
course, with the Lorentz potential); here again, r is invariant and A is
pseudo-invariant:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ hÞðhþ xÞ

p
;A ¼ arctan

u2

u1
(7.80)

The transformation [Eq. (7.78)] now amounts to the rotationA/ Aþ q,
and we see that the chiral-invariant equations are derived from a Lagrangian
expression that is invariant under rotations of the chiral plane: the nonlinear
term depends on r only, not on A:

Fðu1;u2Þ ¼ F
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1 þ u2

2

q "
¼ F

$
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ hÞðhþ xÞ

p %
¼ FðrÞ: (7.81)

Now recall the linear equations [Eqs. (7.33) and (7.35)] for the magnetic
monopole. We thus find that the general nonlinear chiral-invariant Lagran-
gian expression in the Weyl representation reads as follows (Lochak, 1983,
1984, 1985, 1987a,b):
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(7.82)

with r as in Eq. (7.80) and an arbitrary function F. From this Lagrangian,
one first derives in the Dirac representation the following equation:
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where k is the derivative of F: k ¼ F’(r). In the Weyl representation, this
reads as
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(7.84)

So these are the most general possible equations for a magnetic monop-
ole. Note that the mass term of each of the equations in Eq. (7.84) has the
same phase as the corresponding differential term, indicating a phase inde-
pendence between the chiral components x and h, which is absent from
the Dirac equation. This extra degree of freedom comes from the chiral
invariance, which the Dirac equation does not possess, and this is a funda-
mental difference. Eq. (7.84) leaves magnetism invariant, whereas the Dirac
equation does not, at least in general. Only a subset of its solutions enjoys this
propertydnamely, those that satisfy the so-called Majorana condition
(Lochak, 1992). These solutions live on the light cone and leave the norms
of the isotropic currents Xm and Ym invariant.

On the other hand, if one introduces a term representing magnetic inter-
action in the Dirac equation, one does not get an equation for a magnetic
monopole (except in special cases). And if one replaces the magnetic inter-
action by an electric one in an equation of the same type as Eq. (7.83), the

152 Georges Lochak



result does not represent an electron [Daviau (2005), Daviau & Lochak
(1991)].

We will now examine two particular cases of Eqs. (7.83) and (7.84),
starting with the cubic equation that is derived from the Lagrangian [i.e.,
Eq. (7.82)] with a fourth-degree term that is, in the absence of an external
field:
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(7.85)

Bearing in mind the definitions of u1 and u2, this leads to several equiv-
alent forms of the corresponding equation:
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(7.86d)

The first one appears in Heisenberg, (1953,1954), and the second in
Finkelstein, Lelevier, and Ruderman (1951), both in particle physics.
Heisenberg’s equation was later obtained in Rodichev (1961) in a space
with torsion. The first three equations are particular cases of the monopole
equation (Lochak 1987a,b, 2007a,b). The last equation is nothing but the
Weyl representation of any of the other three.

We now come to our second special case of Eqs. (7.83) and (7.84)d
namely, the homogeneous equation. Here, we choose a linear (with
respect to r) mass term known as m0(r), but the equation is still nonlinear
in j:

FðrÞ ¼ k0r; kðrÞ ¼ k0 ¼ Const: (7.87)
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So we can rewrite Eq. (7.84) with k ¼ k0, a constant:
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This is homogeneous of degree 1, with a corresponding second-degree
Lagrangian:
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Adding in an electric interaction, the equation reads as
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(7.90)

This particular case was studied by Daviau and Lochak (1991). The Lagran-
gian equation vanishes by virtue of the equations of the motion, just as in the
linear case, and one gets Planck’s law again. Somedbut not alldsolutions also
yield de Broglie’s wavelength formula and a correct semiclassical approxima-
tion. However, the equation does not account for particle-antiparticle pairs.

In closing, we return to a recurrent theme of this chapter: namely, sym-
metries, which we now study in the nonlinear framework, starting with the
general Lagrangian equations [Eqs. (7.75) and (7.82)], with linear parts LD
and LM. We first obtain Table 7.3, which is derived from Tables 7.1 and 7.2.

One finds that the electromagnetic potentials are now C invariant
because they are external to the system instead of being emitted, as in Table
7.2 where they changed signs. The variance of the linear parts LD and LM
of the Dirac and monopole Lagrangians are given in Table 7.4.

Taking into account the variances of u1 and u2 as displayed in Table 7.3,
we will find those of the nonlinear terms F(u1,u2). Here are some examples;
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the variances of the corresponding equations are obtained by combining the
information from Tables 7.4 and 7.5.

From Table 7.5, one finds that the three invariances C, P, and T are
rarely simultaneously respected; for this to happen, the nonlinear term
must be P and T invariant and change sign under C, as do u1 and the differ-
ential part of the Lagrangian (see Table 7.3). In particular, Heisenberg’s
equation and that of the magnetic monopole are not C invariant because
this invariance is actually incompatible with chiral invariance, for the some-
what paradoxical reason that this last invariance entails too much symmetry.
Indeed, the mass term of the nonlinear Lagrangian expression is chiral invar-
iant, as a function of the radius r, and is thus P, T, and C invariant. For the
equation to be C invariant, however, one would need the mass term to
change sign in the C transform, as previously mentioned. In that sense,
this mass term can indeed be called too symmetric. But the P and T

Table 7.3
P T C

j / g4j eig3g1j
* g2j

*

x / h s2x* eis2h*

h / x s2h* is2x*

X4 / Y4 X4 Y4
X / eY eX Y
Y4 / X4 Y4 X4
Y / eX eY X
J4 / J4 J4 J4
J / eJ eJ J
S4 / eS4 S4 eS4
S / S eS eS
u1 / u1 u1 eu1
u2 / eu2 eu2 eu2
e / e ee ee
g / g g g
V / V eV V
A / eA A A
W / eW W W
B / B eB B

Table 7.4
P T C

LD / LD LD eLD
LM / LM LM eLM
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invariances are still verified, with the definition of T as in Table 7.3. As a
result, these chiral-invariant equations do not obey the CPT theorem.

The fact that an equation is notC invariant does not by itself preclude the
existence of solutions with both signs for the energy, but these do not
describe particle-antiparticle pairs as they do in the Dirac equation. Curi-
ously enough, such pairs could exist because of T invariance, with one ele-
ment going forward in time and the other backward. But the pairs defined
via charge conjugation and time inversion, respectively, are not of the same
nature. In the first case, the two elements have opposite chiralities and move
in the same direction with respect to the course of time, whereas in the sec-
ond case, both elements have the same chirality but move in opposite time
directions (see Table 7.3).

Finally, we would like to conclude by stating that nonlinearity is a com-
plicated matter (an assertion that few would dispute). More information on
this subject can be found in Lochak (1997a,b).

CHAPTER 8

A Catalytic Nuclear Fusion Arising from Weak
Interaction

8.1 MAIN IDEAS

In this chapter, we shall examine a possible way to avoid the super-
high temperatures that are generally introduced in nuclear fusion

Table 7.5
P T C

u1 / u1 u1 eu1
u2 / eu2 eu2 eu2
F ¼ u1 (Dirac) / þF þF eF
F ¼ u2

1 / þF þF þF
F ¼ u3

1 / þF þF eF
F ¼ G (u1, u2) u1, (G > 0) / þF þF eF
F ¼ Fðu2

1þ u2
2Þ / þF þF þF

F ¼ Fðu2
1 þ u2

2Þ
¼ $ðijg5gmjÞðijg5gmjÞ

/ þF þF þF

F ¼ (u1, u2) / eF eF þF
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experiments in order to overcome the Coulomb barrier between electri-
cally charged particles of the same sign. We start from the observation
that although temperatures are very high in the middle of stars, they are
lower than the temperatures used in terrestrial experiments in nuclear
fusion. We suggest the possibility of a catalyst that could be present in stars
and absent from our experiments. It will be shown that neutrinos in the
stars could play the role of this catalyst since they are abundant and subject
to weak interactions, which makes them able to play this role. But they
cannot do so in terrestrial experiments, first because there are too few neu-
trinos, and second because since they have no charge, they are scattered in
all directions. Nevertheless, instead of neutrinos, we have at our disposal
leptonic magnetic monopoles, which were at first theoretically discovered
and described and have now for many years been experimentally produced,
observed, and applied. These leptonic monopoles have the same weak
interaction properties as neutrinos and could accelerate such phenomena
as a proton-proton fusion at temperatures that are far lower than the tem-
peratures used in other attempts at nuclear fusion. In addition, they can
easily be focused and accelerated thanks to their magnetic charge, rather
than being scattered in space. Thus, they are potentially able to modify
the problem of nuclear fusion.

8.2 INTRODUCTION

One of the most difficult problems in applied physics today is the
industrial development of nuclear fusion energy. As is well known, the cur-
rent attempts in this area are based on a race to achieve giant temperatures of
plasma (several hundreds of million degrees) in order to increase the velocity
of nucleons with the same charge sign (positive or negative), to the extent
that they are brought close enough to each other to overcome Coulomb
repulsion. But there are problems with this approach.

First, there is no material enclosure that can survive such tem-
peratures. The tokamak, a device invented by Russian physicists Igor
Tamm and Andrei Sakharov, seemed to provide an answer: in it, electri-
cally charged particles are forced to rotate around a magnetic field to
prevent them from approaching the walls. But the tokamak becomes
unstable and works only over brief intervals of time; thus, the problem
is not solved.
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The message of this chapter is that high temperatures must be aban-
doned. But how can we do this? Let us start with a few opening remarks:
1. Astrophysicists have discovered that although temperatures inside stars

are very high, they are lower than those used in the terrestrial research
installations for nuclear fusion. So it is natural to ask whether there is a
catalyst in the stars that boosts fusion, but which would be absent from
terrestrial laboratories.

2. What could such a catalyst be? It is interesting to observe that weak inter-
actions constitute, in some manner, an obstacle to the strong interactions
that provide the energy of stars. For instance, they are in a position to
slow down the carbon and hydrogen cycles. Thus, one can ask if, con-
versely, they could speed up the strong interactions, and whether we
could use this property that results from this.

3. The weak interactions that occur in the known astronomical cycles lead
to the emission of neutrinos. Conversely, many antineutrinos in the stars
are produced by the b disintegration of free neutrons:

n/pþ e$ þ ~v: (1)

Consequently, these antineutrinos can be absorbed in inverse b

disintegration:

pþ ~n/nþ eþ: (2)

In this last reaction, an antineutrino coming from outside gives rise to the
reaction in Eq. (2): its absorption is equivalent to the forced emission of a
neutrino. Such a reaction can boost an entire cycle, the antineutrino playing
the role of a quasi-catalyst (which is only “quasi” because it disappears in the
reaction).
4. Unfortunately, even if this hypothesis is justified, it cannot be applied in

laboratories, which do not have sufficient neutrinos. Furthermore, since
neutrinos are neutral, they are diffused in all directions and cannot be
focused. This is one of the reasons why the famous 1996 experiment
of Reines and Cowan, which proved the existence of the neutrino,
was very difficult.

5. Nevertheless, a result found by Ivoilov (2006) lends support to this
hypothesis; he showed that when irradiating a b radioactive source
with leptonic magnetic monopoles, the lifetime of the source decreases;
in other words, the b radioactivity is accelerated.
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8.3 A POSSIBLE CATALYST FOR NUCLEAR FUSION

Now, we shall show that a possible catalyst for nuclear fusion may be
the leptonic nuclear monopoles that were theoretically predicted and then
observed in our group (see Lochak, 1983, 1985, 1997a,b; Lochak, 2007;
and this entire book). For now, let us say briefly that these monopoles are
very light (even massless in the present theory), contrary to the monopoles
described by other authors, which are supposed to be very heavy. Further-
more, they have two main properties:
• They have a magnetic charge g which is equal to 137=2 times the electron

charge (in the same Gaussian units).
• They are magnetically excited neutrinos that are subject to the same

weak interactions, and are thus able to influence the same nuclear phe-
nomena. The most important observation is that unlike neutrinos, lep-
tonic monopoles can be focused by electromagnetic forces and their
energy can be increased in magnetic fields.
Therefore, we can substitute the following reaction to the reaction in

Eq. (2):

pþ ~m/nþ eþ; (3)

where ~m is an anti-monopole with the same weak interactions as the anti-
neutrino in Eq. (2). Next we suggest a test experiment in order to verify the
reaction (3).

8.3.1 Some Remarks
• Concerning the reaction in Eq. (3): It may be objected that energy is not

conserved because a proton is lighter than a neutron. But that was already
the case for the b inverse formula [Eq. (2)]: such formulas are only writ-
ten in conformity with quantum rules, and the conservation of energy is
admitted for other reasons. Our case is simpler because the monopole
may be accelerated in a magnetic field.

• Concerning temperature: The temperature required must be enough to cre-
ate a plasma, which is much lower than the several hundred million
degrees needed for other experiments in nuclear fusion.
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8.4 A TEST-EXPERIMENT

Leptonic magnetic monopoles generally appear in disruptive electric
phenomena in water, such as the following31:
1. An explosion in water of a stepped-up electric conductor (Urutskoiev,

Moscow, described at a conference in Nantes, France)
2. An electric arc in water (Ivoilov, Kazan)
3. Strong electric sparks in water (Bergher, Fondation Louis de Broglie,

Paris)
The monopoles are recorded in different manners, but most often on

photographic film. Here are three characteristic tracks: (a) The first is greatly
enlarged (characteristic caterpillar form). (b) The second is a track with its
image in a germanium mirror; this image is identical to the original rotated
by an angle of p, in accordance with the theoretical predictions. (c) The
third track was observed on the magnetic north pole; a solar monopole cre-
ated by a b decay in a strong solar magnetic field. We have hundreds of other
different examples of tracks.

By definition, the recorded monopoles were originally present in
the source. Thus, these same monopoles were able to accelerate the creation
of deuterons, which is the first and principal stage of the hydrogen cycle:

pþ p/ 2D þ eþ þ n: (4)

But at this point, there occurs a forced reaction due to an antimonopole
coming from outside, which then disappears in the reaction, according to
the following formula:

pþ pþ ~m/ 2D þ eþ: (5)

A possible experiment could be to create, in a container of water, the
explosion of an electric conductor (as in Urutskoiev’s experiments), or an
electric arc (as in Ivoilov’s experiments). Then, the proportion of heavy
water must increase as the water cools in the container.

I am aware that I am making several hypotheses here, but there is no sci-
ence without hypotheses. Nevertheless, apart from other possible objec-
tions, one important question concerns the number of produced
monopoles, and thus the probability of the purported nuclear phenomena.

31 There are other examples, such as b radioactivity in a magnetic field.
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Despite that, at first glance, Eq. (5) seems to be easy to realize. How-
ever, there is a problem: the number of monopoles (and consequently,
the probability of the reaction). If the number of monopoles produced
by a source corresponded to the number of trajectories observed in the pre-
vious images, this number would be very small and the probability would
be negligible.

But an important observation by Ivoilov, confirmed more recently by
Daniel and Sonia Fargue (Daviau et al., 2013a,b), shows that apart from
the rare large tracks that are generally observed, there are many other tracks
which, contrary to the preceding statements, come directly from the direc-
tion of the source. These tracks are very thin and are easy to miss. Never-
theless, they have the charge of a monopole, and they probably constitute
the hidden but most significant emission of monopoles.

The first to observe these thin tracks (indirectly) was Urutskoiev. When
he obtained the first photographs of large monopole tracks on photo-
graphic film (curiously, in a plane perpendicular to the direction of the
monopole source), he tried to find three-dimensional (3D) tracks in a
bubble chamber. But he was disappointed because instead of 3D tracks,
he obtained a large white cloud. I now believe that this cloud consisted
of the extremely numerous thin tracks later identified by Ivoilov. Actually,
the large tracks correspond to deviated monopoles that strike the limit
between the plastic film support and the photosensitive coating, and are
strongly deviated from their initial trajectory. The large tracks are thus
due to a kind of rare accidents, which explains why they are so rare. On
the contrary, “true” tracks (which is called “true” because they are free)
seem to be the numerous thin tracks. Therefore, we can assert that the
emitted monopoles are actually extremely numerous. Thus, it is possible
that my test-experiment might be not so difficult to perform. Some other
arguments support this idea, among which the macroscopic phenomena

(b) (c)(a)

Figure 8.1
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observed by Urutskoiev’s group after the Chernobyl catastrophe32, such as
the following:
1. In the same hall, there were two parallel conductors separated by some

meters: one was a water pipe coming from the nuclear reactor, and
the other an electric cable in a concrete box. During the disaster, this
concrete protection was broken by the strength of the electric cable
strongly attracted by the water pipe. Puzzled by this phenomenon, a
young physicist raised the audacious hypothesis that there could be mag-
netic monopoles in the water coming from the reactor. He meant it as a
joke, but actually, it was later confirmed; this implies an enormous quan-
tity of monopoles.

2. The reactor had a concrete cover weighing about 3,000 tons. During the
accident, it was pushed aside and fell vertically against the wall of the
reactor. If this was due to gas pressure inside the reactor, then a calcula-
tion proves that the walls would have exploded, whereas in fact the walls
of the reactor were in perfect condition. The paint on the inside of these
walls was not even burned, and it would have burned at a temperature of
300.C. Two conclusions emerged from these observations:
There was no fire in the reactor except in a very limited volume (this

was, of course, later verified directly) and thus there was no strong
pressure.
If the cover was lifted, this means that its weight was far less than 3,000

tons during the catastrophe. It was assumed that monopoles have modi-
fied gravitation. This was confirmed experimentally by Urutskoiev and
theoretically by myself on the basis of my theory of monopoles and of
de Broglie’s theory of light, which gives a quantum theory of gravitation
(de Broglie proved the influence of electromagnetism on gravitationd
i.e., Einstein’s unitary theory, which he presented in 1942 in his General
Theory of Spin Particles). All this would be impossible unless an enormous
number of monopoles was produced.

32 It must be emphasized that we absolutely disagree with the official Soviet interpretation of the
catastrophe as the result of “errors” by engineers. We have strong arguments in favor of the
hypothesis of an explosion of an electrical machine (probably a transformer) that produced a
stream of monopoles that then activated a chain of disintegrations never seen before. An
important point is that we came up with this hypothesis independently: we met only years later.
It must be added that two completely independent groups were sent to Chernobyl to explain the
disaster: one by a scientific center, the Kurchatov Institute, under the direction of Urutskoiev,
and the other, the official one, in order to find a guilty party. And this is the origin of the official
“explanation.”
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CHAPTER 9

Conclusion

The Foreword of this book presented a brief history of the magnetic
monopole. From this, it follows that the monopole is not a particle like
othersdjust another constituent particle of matter. Without its name ever
being mentioned, this particular particle was long awaited because it is nec-
essary to the entire concept of electromagnetism. We saw in Chapter 6 that
this monopole even plays a role in universal gravitation, in the form of a
graviton. If we now take a bird’s-eye view of the whole of physics over
the last four centuries, we can say that it is dominated by three great ideas:
Isaac Newton’s universal gravitation, James Clerk Maxwell’s electromagnet-
ism, and quantum theory.

And if we want to identify the greatest unachieved dream of the twen-
tieth century, it is most certainly Einstein’s Grand Unified Theory, which
would have unified the two theories of gravitation and electromagnetism
in a single geometric vision of the universe. To this day, such a theory has
never been established in the form imagined by its creator. However,
although this is little known, Louis de Broglie and Marie-Antoinette Ton-
nelat33 gave a different version, based not on geometry but on quantum
theory, which emerges from de Broglie’s theory of light (see Chapter 6
and de Broglie, 1940e1942, 1949) and his general theory of particles
with spin (de Broglie, 1950).

Recall that the idea on which these theories are based is that there exists a
fundamental particle of spin ½, defined by Dirac’s equation34, and that the
particles of greater spin arise through the fusion of several of these. In
particular:
• Two particles of spin½ give Einstein’s photon, of spin 1, which is thus no

longer an elementary particle but a composite particle; and de Broglie
showed that when the photon is defined this way, it obeys Maxwell’s
equations. Heisenberg gave as much importance to this discovery of de
Broglie’s as to the wave properties of the electron (Heisenberg, 1953).

33 M. A. Tonnelat, an ex-student of de Broglie, was a great specialist in relativity was invited by
Schr€odinger to Dublin and by Einstein to Princeton.

34 Proceedings of the Royal Society, 187, 610; and 118, 34; 1928.

Theory of the Leptonic Monopole 163



• Four particles of spin ½ give the graviton of spin 2, which obeys Ein-
stein’s equations of general relativity, unfortunately only in the linear
approximation, given the linearity of quantum mechanics. But the
most important thing is that the equations of gravitation come together
naturally with three of Maxwell’s equations of electromagnetism, as in
Einstein’s vision: it is indeed a version of the Grand Unified Theory,
but it is a quantum rather than a geometric theory.

• Furthermore, I recently showed that only two of these photons are Ein-
stein’s electric photons (Lochak, 1995a, and Chapter 6 of this volume):
the third photon is a magnetic photon that arises in the theory of the
monopole. This establishes a link between the magnetic monopole
and gravitation.
This book is based on two ideas that form the essence of its content:

• Dirac’s electron must be accompanied by another particle, the leptonic
magnetic monopole.

• Einstein’s photon is not unique: it is the fundamental element of a
sequence of elecphotons of spins 0, 1, 2, etc. and each electric photon
is paired with a magnetic photon.
Wealreadyknowthat the idea of themagneticmonopoledalthough itwas

never explicitly nameddwas expressed by Maxwell and by Pierre Curie. My
contribution will be to propose several wave equations, of which one is linear
and very simple (1983). At the start of this research, I submitted to Louis de
Broglie in hisfinal years (he died in1987) somepreliminary ideas, on the subject
of which I will share here a personal anecdote that I have kept to myself until
now.Oneday, he listened tome in silence and thenmade this single comment:
“Too bad Einstein is deaddthis would have interested him.”

To me, this memory at least partially makes up for the blindness of the
scientific community, which is locked into the idea of a very heavy monop-
ole, which has never been observed, and has put up a wall of resistance to my
idea, even though it has been repeatedly confirmed by experiments35. I can
only refer to the saying of Heraclitus: “If you don’t seek for the unexpected,
you will never know the truth.”

Let us now make two remarks on this subject. The idea of the leptonic
monopole is hidden in Dirac’s equation, in the form of two equations that I

35 The silence is not absolute, however, since I received from a great institute of nuclear physics the
“mathematical proof” that my monopole doesn’t exist. The “proof” only had two flaws: (1) It did
not start with the correct equation; and (2) It totally neglected the experiments, but that, of course, is
a mere detail.
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deduced in 1956 thanks to a different formulationof the equation.Oneof these
equations is obvious: it expresses the conservation of electric charge. The other
onewas incomprehensible at the time: evendeBroglie couldnot decode it, and
it took me twenty years to understand that it expresses the conservation of a
magnetic quantity which yielded the equation of the monopole.

This first equation leads to a zero mass for the monopole, which must
then move in the vacuum at the speed of light, which is not the case for
the other two equations found in this book. But it is remarkable that it suf-
fices to write Dirac’s usual equation (with a nonzero mass) on the light cone
(see Chapter 5), while requiring the current to be isotropic, to render the
equation ambivalent, representing both an electron and a monopole.

The second remark concerns de Broglie’s theory of light. The original
form of the equation that he found is very complicated, but thanks to an
algebraic transformation, he was able to deduce (de Broglie, 1950) Max-
well’s equation from it with the definition of the fields using potentials
and Lorentz’s condition. Impressed by this, de Broglie did not look for fur-
ther algebraic transformations.

It was only recently that I showed that in reality, there are two, and only
two, such transformations: de Broglie’s and another one (described in Chapter
6). This other transformation also yields Maxwell-like equations, which do
not correspond to the electron but to the monopole whose equation I already
knew. And they define new covariant derivatives that represent the action of
electromagnetism not on an electric charge, but on a magnetic one.

In other words, de Broglie’s equations for the photon do not only rep-
resent Einstein’s photon, but also a second photon of spin 1: namely, a mag-
netic photon. This second photon introduced by me (and also, independent
of me, by Dominique Spehler) is thus not an artificial invention since it was
hidden in de Broglie’s original equations. It just needed to be found.

It is thus very strange that these two new particles, the magnetic monop-
ole and the magnetic photon, already existed in a hidden form in Dirac’s
equation for the electron and in de Broglie’s equation for light. But I could
not show this to de Broglie, who would have understood it in a second and
leapt up, interrupting my explanation. Sadly, he had died by then.

Let me add to this what I showed in Chapter 6 concerning the photon of
spin 0, which is to my mind a fundamental aspect of de Broglie’s theory of
light. The application of this to the Aharonov-Bohm effect that I describe
shows that this photon of spin 0 represents a kind of closure of the entire
theory of light. This circle of ideas constitutes a general theory of electro-
magnetism, which englobes Einstein’s gravitation in an entirely new
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manner. But it is necessary to state one important criticism: the simple factd
already acknowledged in the theory of de Broglie-Tonnelatdthat Einstein’s
equations of gravitation appear only in the form of linear approximations of
general relativity indicates a fundamental incompleteness of the theory.

Unlike the well-known quantum theory, a future theory should start
from nonlinear quantum concepts, and the first proof of success would obvi-
ously be to find the exact form of general relativity, which should serve as a
guide in this research.

As a “conclusion to the conclusion,” I would like to add a few further
remarks.

The magnetic monopole reveals a duality between electricity and mag-
netism that Maxwell has already noted in his treaty, since he relied on a dou-
ble Coulomb’s law for electric and magnetic poles. Note that Charles
Augustin de Coulomb really established these two laws by measures on elec-
trically charged bodies and at the extremities of long magnetic wires.

We find this duality in what precedes, under two different forms:
• The two different gauges of Dirac’s equation, one electric and the other

magnetic, which yield the equation of the electron and the equation of
the monopole, respectively.

• The second form in which the duality appears is, as we have seen, de
Broglie’s theory of light and the two photons, electric and magnetic. It
must be noted that the magnetic photon already implicitly arose via
the second gauge, which gave the equation of the monopole, so that
this photon is confirmed by all the experiments on interactions of the
monopole with an electromagnetic field, just as Einstein’s electric pho-
ton is confirmed by the corresponding interactions.
Certainly, there are many less proofs of this duality on the magnetic side

than on the electric side, but then they are separated by a century. And it
must also be said that when we speak of duality, it is never absolutely sym-
metric. Our world, at least in the present state of knowledge, is much more
electric than magnetic.

This was already visible in wave-particle duality. The material world is
much more particle than wave. We know that Heinrich Hertz thought
that cathode rays were waves (and his choice is understandable). But Jean
Perrin showed the particle properties of these rays, and that characteristic
is at the origin of the discovery of the electron. Indeed, de Broglie showed
later that both Perrin and Hertz were right about wave-particle duality.

Nevertheless, the electron really is “more particle than wave,” whatever
Erwin Schr€odinger may think. But for the photon, the contrary holds: light

166 Georges Lochak



is more wave than particle. It is a question of massdmuch smaller for the
photon than for the electrondand of spin: ½ for the electron, which is
an individualistic fermion, and 1 for the photon, which is a boson prone
to collective states.

But what happens with a monopole? The equation suggested in Chap-
ters 1, and 3 describes the essential properties of a leptonic monopole. This
equation is inspired by the Dirac equation and the change from the electric
to the magnetic particle is characterized by the presence of a g5 matrix,
absent from the Dirac equation. So that the problem of the kinetic moment
is very different from the electric case, especially for the Coulomb law.

We saw in Chapter 3 that when a monopole interacts with an electric
Coulomb center, we find no more the Laplace functions with integer
idexes, as in the case of a hydrogen atom, but generalized spherical functions,
the quantum numbers of which are either integers or half-integers. In the
case of an integer, we must add the spin value ½: thus, the kinetic moment
becomes a half-integer and the monopole is in a fermion state. But if the
quantum number of the kinetic moment is a half-integer (which is possible
because of the top-symmetry of the monopole) we must, once more, add a
spin value ½, so that the total moment will be an integer, and the monopole
is now in a boson state: that is a wholly different case.

This is why the interaction between a monopole and an electric charge is a
particular case of electromagnetic interaction because, owing to the presence of
half-integer kinetic moments of monopoles, due to their top-symmetry, there
is the possibility of transitions between fermion and boson states, which is abso-
lutely forbidden. One example of this is between hydrogen quantum states
with photon interactions because the latter are bosons. The possible existence
of monopoles in boson states implies the possibility of phenomena of the type
of magnetic supraconductivity, which could be very interesting.

As was shown in Chapter 3, another important consequence is that in
such an electron-monopole interaction, the conservation of the magnetic
current is lost because of the quantification of the product (e.g., of both
charges, electric and magnetic), and possible jumps between the quantum
values. It signifies that, if we admit the general conservation of electricity
as seems to be true in all the experiments to date, we must admit that the
magnetic charge is not conserved in this special case. It is quantized, and
there must be quantum transitions between quantum states. In particular,
if the magnetic charge was initially equal to zero, we shall observe the birth
of a magnetic monopole. The description of such a phenomenon needs a
new equation, which does not seem to be hard to build.
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